Math, asked by raavu, 6 months ago

(2x-1) (x - 3) = (x + 5) (x-1)​

Answers

Answered by Anonymous
23

\huge\tt{\bold{\underline{\underline{Question᎓}}}}

(2x-1) (x - 3) = (x + 5) (x-1)

\huge\orange{\overbrace{\red{\underbrace\color{blue}{\underbrace\color{black}{\colorbox{lime}{{\red\:{「Answer」}}}}}}}}

_______________________________________

_______________________________________

 =  > (2x-1) (x - 3) = (x + 5) (x-1)

 =  > 2x(x - 3) - 1(x - 3) = x(x - 1) + 5(x - 1)

 =  > 2 {x}^{2}  - 6x - x + 3 =  {x}^{2}  - x + 5x - 5

 =  > 2 {x}^{2}  -  {x}^{2}  - 6x - x  + x - 5x =  - 5 - 3

 =  >  {x}^{2}  - 6x - 5x =  - 8

 =  >  {x}^{2}  - 11x + 8 = 0

Here we use quadratic formula to find out the solution:-

Here,a=1 ; b=-11 & c=8

 =  > x =  \frac{ - b± \sqrt{ {b}^{2}  - 4ac} }{2a}

 =  >  x =  \frac{ - ( - 11)± \sqrt{ {( - 11)}^{2}  - 4(8)}  }{2}

 =  > x =  \frac{11± \sqrt{121 - 32} }{2}

 \bold{\red{=  > x =  \frac{11± \sqrt{89} }{2}}}

_______________________________________

_______________________________________

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Answered by Anonymous
1

{(2x-1) (x - 3) = (x + 5) (x-1)}</p><p></p><p>\huge\orange{\overbrace{\red{\underbrace\color{blue}{\underbrace\color{black}{\colorbox{lime}{{\red\:{「Answer」}}}}}}}} </p><p>「Answer」</p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p></p><p>_______________________________________</p><p></p><p>_______________________________________</p><p></p><p>= &gt; (2x-1) (x - 3) = (x + 5) (x-1)=&gt;(2x−1)(x−3)=(x+5)(x−1)</p><p></p><p>= &gt; 2x(x - 3) - 1(x - 3) = x(x - 1) + 5(x - 1)=&gt;2x(x−3)−1(x−3)=x(x−1)+5(x−1)</p><p></p><p>= &gt; 2 {x}^{2} - 6x - x + 3 = {x}^{2} - x + 5x - 5=&gt;2x </p><p>2</p><p> −6x−x+3=x </p><p>2</p><p> −x+5x−5</p><p></p><p>= &gt; 2 {x}^{2} - {x}^{2} - 6x - x + x - 5x = - 5 - 3=&gt;2x </p><p>2</p><p> −x </p><p>2</p><p> −6x−x+x−5x=−5−3</p><p></p><p>= &gt; {x}^{2} - 6x - 5x = - 8=&gt;x </p><p>2</p><p> −6x−5x=−8</p><p></p><p>= &gt; {x}^{2} - 11x + 8 = 0=&gt;x </p><p>2</p><p> −11x+8=0</p><p></p><p>Here we use quadratic formula to find out the solution:-</p><p></p><p>Here,a=1 ; b=-11 &amp; c=8</p><p></p><p>= &gt; x = \frac{ - b± \sqrt{ {b}^{2} - 4ac} }{2a}=&gt;x= </p><p>2a</p><p>−b± </p><p>b </p><p>2</p><p> −4ac</p><p>	</p><p> </p><p>	</p><p> </p><p></p><p>= &gt; x = \frac{ - ( - 11)± \sqrt{ {( - 11)}^{2} - 4(8)} }{2}=&gt;x= </p><p>2</p><p>−(−11)± </p><p>(−11) </p><p>2</p><p> −4(8)</p><p>	</p><p> </p><p>	</p><p> </p><p></p><p>= &gt; x = \frac{11± \sqrt{121 - 32} }{2}=&gt;x= </p><p>2</p><p>11± </p><p>121−32</p><p>	</p><p> </p><p>	</p><p> </p><p></p><p>\bold{\red{= &gt; x = \frac{11± \sqrt{89} }{2}}}=&gt;x= </p><p>2</p><p>11± </p><p>89</p><p>	</p><p> </p><p>	</p><p> </p><p></p><p>_______________________________________</p><p></p><p>_______________________________________</p><p></p><p>нσρє ıт нєłρs yσυ</p><p></p><p>_____________________</p><p></p><p> \: тнαηkyσυ

Similar questions