Math, asked by yaminjyamu, 2 months ago

(2x - 10) (3x + 20) find the measure of the unknown angle in the following figure

Answers

Answered by sachethck
1

Answer:

x=30

Step-by-step explanation:

3x-2x=20+10

x=30

x=30

Answered by SANDHIVA1974
2

Answer:

✴ Given :-

Two supplementary angles are :

(2x - 10)

(3x + 20)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

✴ To Find :-

➬ Find these two unknown angles.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

✴ Solution :-

❒ We know that :

 \orange{✯{\green{\text{ Sum of supplementary angles = 180° }}}}

\qquad{━━━━━━━━━━━━━━━}

❒ Finding the value of x :

{\implies{\qquad{\underline{\sf{(2x - 10) + (3x + 20)}} = 180°}}}

{\implies{\qquad{\sf{(5x - {\underline{10) = 180°}}}}}}

{\implies{\qquad{\sf{5x = {\underline{180 + 30°}}}}}}

{\implies{\qquad{\underline{\sf{5}}{\sf{x = {\underline{210}}}}}}}

{\implies{\qquad{\sf{x = {\underline{\sf{\dfrac{210}{5} }}}}}}}

{\implies{\qquad{x = {\underline{\sf{\cancel\dfrac{210}{5} }}}}}}

\qquad{\qquad{\large{\red{:\longmapsto{\underline{\overline{\boxed{\green{\sf{ x = 42}}}}}}}}}}

\qquad{━━━━━━━━━━━━━━━}

❒ Angles :

∠1 :

\qquad{:\longmapsto{\sf{∠1 = (2x - 10) }}}

\qquad{:\longmapsto{\sf{∠1 = (2 \ times 42 - 10) }}}

\qquad{:\longmapsto{\sf{∠1 = (84 - 10) }}}

\qquad{\qquad{\large{\red{:\longmapsto{\blue{\underline{\overline{\sf{ ∠1 = 74° }}}}}}}}}

∠2 :

\qquad{:\longmapsto{\sf{∠2 = (3x - 20) }}}

\qquad{:\longmapsto{\sf{∠2 = (3 \times 42- 20) }}}

\qquad{:\longmapsto{\sf{∠2 = (126 - 20) }}}

\qquad{\qquad{\large{\red{:\longmapsto{\blue{\underline{\overline{\sf{ ∠2 = 146° }}}}}}}}}

\qquad{━━━━━━━━━━━━━━━}

❒ Verification :

{\implies{\sf{ (2x - 10) + (3x + 20) = 180°}}}

{\implies{\sf{ (2 \times 42 - 10) + (3 \times 42 + 20) = 180°}}}

{\implies{\sf{ (84 - 10) + (126 + 20) = 180°}}}

{\implies{\sf{ 74° + 106° = 180°}}}

{\implies{\sf{ 180° = 180°}}}

 \:\:\:\: {\red{\underline{\sf{ LHS = RHS}}}}

Hence, Verified.

{\green{\underline{▬▬▬▬▬}}{\pink{\underline{▬▬▬▬▬}}{\orange{\underline{▬▬▬▬▬}}{\purple{\underline{▬▬▬▬▬▬}}}}}}

Similar questions