Math, asked by shravanghadage05, 3 months ago

2x^2-2x+1/2=0 by perfect square method​

Answers

Answered by mathdude500
4

Given Question :-

Solve the following equation by perfect square method :-

\rm :\longmapsto\: {2x}^{2}  - 2x + \dfrac{1}{2}  = 0

\large\underline{\bf{Solution-}}

\rm :\longmapsto\: {2x}^{2}  - 2x + \dfrac{1}{2}  = 0

\rm :\longmapsto\: {2x}^{2}  - 2x =  -  \:  \dfrac{1}{2}

Step :- 1 Make the coefficient of x² unity.

So, Divide both sides by 2.

\rm :\longmapsto\: {x}^{2}  - x =  -  \:  \dfrac{1}{4}

Step :- 2 Adding the square of half the coefficient of x on both sides.

We get

\rm :\longmapsto\: {x}^{2}  - x  +  {\bigg( - \dfrac{1}{2}  \bigg) }^{2} =  -  \:  \dfrac{1}{4} +  {\bigg( - \dfrac{1}{2}  \bigg) }^{2}

\rm :\longmapsto\: {x}^{2}  - 2 \times x  \times  \dfrac{1}{2}  +  {\bigg(\dfrac{1}{2}  \bigg) }^{2} =  -  \:  \dfrac{1}{4} +  {\bigg(\dfrac{1}{4}  \bigg) }

\rm :\longmapsto\:  {\bigg(x - \dfrac{1}{2}  \bigg) }^{2} = 0

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\boxed{ \bf \:  \because \:  {x}^{2}  - 2xy +  {y}^{2}  =  {(x - y)}^{2}}}

\rm :\longmapsto\:{\bigg(x - \dfrac{1}{2}  \bigg) } = 0

\bf\implies \:x = \dfrac{1}{2}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac

Similar questions