Math, asked by akshi5804, 7 days ago

2x^2-5x-4=0, find root of quadratic equation

Answers

Answered by kadeejasana2543
0

Answer:

Answer:

Roots of the given quadratic equation are

x=\frac{5+\sqrt{57} }{4}\ or\ x=\frac{5-\sqrt{57} }{4}.

Step-by-step explanation:

We find the roots by using quadratic formula  

x=\frac{-b}{2a}±\frac{\sqrt{b^{2}-4ac} }{2a},

in the given equation 2x^{2} -5x-4=0,

the value of a=2,b=-5,c=-4.

Substituting in the formula we get

x=\frac{5}{4}±\frac{\sqrt{(-5)^{2}-4(2)(-4)}}{4}

  =\frac{5}{4}±\frac{\sqrt{25+32} }{4}

  =\frac{5}{4}±\frac{\sqrt{57} }{4}.

Thus the values of x are x=\frac{5}{4} +\frac{\sqrt{57} }{4} or x=\frac{5-\sqrt{57} }{4}.

thank you

Similar questions