Math, asked by aditim1284, 10 months ago

2x^2+5x-6=0solve by completing square method

Answers

Answered by Anonymous
3

\bold\red{\underline{\underline{Answer:}}}

\bold{Roots \ are \frac{-5+\sqrt73}{4} \ and \frac{-5-\sqrt73}{4}}

\bold\orange{Given:}

\bold{The \ given \ quadratic \ equation \ is}

\bold{=>2x^{2}+5x-6=0}

\bold\pink{To \ find:}

\bold{=>Roots \ of \ the \ equation \ by \ completing}

\bold{the \ square \ method.}

\bold\green{\underline{\underline{Solution:}}}

\bold{By \ completing \ the \ square \ method}

\bold{=>2x^{2}+5x-6=0}

\bold{Dividing \ the \ equation \ by \ 2, \ we \ get,}

\bold{=>x^{2}+\frac{5x}{2}-3=0}

\bold{=>x^{2}+\frac{5x}{2}=3}

_____________________________

\bold{(\frac{1}{2}×Coefficient \ of \ x)^{2}}

\bold{=>(\frac{1}{2}×\frac{5}{2})^{2}}

\bold{=>(\frac{5}{4})^{2}}

\bold{=>\frac{25}{16}}

_____________________________

\bold{Adding \frac{25}{16} \ on \ both \ sides}

\bold{=>x^{2}+\frac{5x}{2}+\frac{25}{16}=3+\frac{25}{16}}

\bold{=>(x+\frac{5}{4})^{2}=\frac{48+25}{16}}

\bold{=>(x+\frac{5}{4})^{2}=\frac{73}{16}}

\bold{Taking \ square \ root \ of \ both \ sides}

\bold{=>x+\frac{5}{4}=\frac{\sqrt73}{4} \ or \frac{-\sqrt73}{4}}

\bold{=>x=\frac{\sqrt73}{4}-\frac{5}{4} \ or \frac{-\sqrt73}{4}-\frac{5}{4}}

\bold{x= \frac{-5+\sqrt73}{4}}

\bold{or \ x=\frac{-5-\sqrt73}{4}}

\bold\purple{\tt{\therefore{Roots \ are \frac{-5+\sqrt73}{4} \ and \frac{-5-\sqrt73}{4}}}}

Similar questions