Math, asked by sushilasonar651, 8 months ago

2x^2-7x+3=0 solve by completing ​

Answers

Answered by ishan1005
2

Hey your answer is in the attachment

Hope it helps.

Attachments:
Answered by Mihir1001
4

\huge\boxed{x = 3}\LARGE{ \:  \: or \:  \: }\huge\boxed{x =  \frac{1}{2} }

Answer:

Method used : Completing the square

We have,

\Large{ 2 {x}^{2}  - 7x + 3 = 0}

\Large{ \Rightarrow  {x}^{2}  -  \frac{7}{2} x +  \frac{3}{2}  = 0}———————[dividing both the sides with 2]

\Large{ \Rightarrow  {x}^{2}  -  \frac{7}{2} x =  -  \frac{3}{2} }

\Large{ \Rightarrow  {x}^{2}  - 2(x) \left(  \frac{7}{4}  \right)  =  -  \frac{3}{2} }

\Large{ \Rightarrow  {x}^{2}  - 2(x) \left(  \frac{7}{4}  \right)  +  { \left(  \frac{7}{4}  \right) }^{2}  =  -  \frac{3}{2}  +  { \left(  \frac{7}{4}  \right) }^{2} }——-————-[adding { \left(  \frac{7}{4}  \right) }^{2} to both the sides]

\Large{ \Rightarrow  { \left( x -  \frac{7}{4}  \right) }^{2}  =  -  \frac{3}{2}  +  { \left(  \frac{7}{4}  \right) }^{2} }—-——————( since  {(a - b)}^{2}  =  {a}^{2}  - 2ab +  {b}^{2} )

\Large{ \Rightarrow  { \left( x -  \frac{7}{4}  \right) }^{2}  =  -  \frac{3}{2}  +  \frac{49}{16} }

\Large{ \Rightarrow  { \left( x -  \frac{7}{4}  \right) }^{2}  =  \frac{49 - 24}{16} }

\Large{ \Rightarrow  { \left( x -  \frac{7}{4}  \right) }^{2}  =  \frac{25}{16} }

\Large{ \Rightarrow  { \left( x -  \frac{7}{4}  \right) }^{2}  =  { \left(  \pm  \frac{5}{4}  \right) }^{2} }

\Large{ \Rightarrow x -  \frac{7}{4}  =  \pm  \frac{5}{4} }———————[on square-rooting both the sides]

\Large{ \Rightarrow x =  \frac{7}{4}  \pm  \frac{5}{4} }

\Large{ \Rightarrow x =  \frac{7 \pm 5}{4} }

<hr><hr>

\Large{ \therefore x =  \frac{7 + 5}{4}  \implies x =  \frac{12}{4}  =  \frac{ \cancel{12}  \:  {}^{3} }{ \cancel{4}  _1}  = 3}

OR

\Large{ \therefore x =  \frac{7 - 5}{4}  \implies x =  \frac{2}{4}  =  \frac{ \cancel{2}  \:  {}^{1} }{ \cancel{4}  _2}  =  \frac{1}{2} }

<hr><hr>

Similar questions