Math, asked by khanakdudhi16169, 3 months ago

2x^2 + √7x -7 = 0
solve equation using quadratic formula​

Answers

Answered by yuvsingh1705
1

(☞ ᐛ )☞ Here's ur answer

Hope this helps you

Attachments:
Answered by Anonymous
2

GIVEN :-

  • 2x² + √7x - 7 = 0

 \\

TO FIND :-

  • Roots by using Quadratic Formula.

 \\

TO KNOW :-

Quadratic Formula ,

 \\    \bigstar\boxed{\sf \: roots =  \dfrac{ - b± \sqrt{ {b}^{2} - 4ac } }{2a} } \\

Here , a is coefficient of x².

b is coefficient of x.

c is constant.

 \\

SOLUTION :

The equation, 2x² + √7x - 7 is in the form ax² + bx + c

So,

  • a = 2
  • b = √7
  • c = -7

Putting values in formula ,

 \\  \sf \: roots =  \dfrac{ -  \sqrt{7} ± \sqrt{ { (\sqrt{7}) }^{2} - 4(2)( -7 ) } }{2(2)}  \\  \\  \\  \sf \: roots =  \dfrac{ -  \sqrt{7}± \sqrt{7  + 56}  }{4}  \\  \\  \\ \sf \: roots =  \dfrac{ -  \sqrt{7} ± \sqrt{63} }{4}  \\  \\  \\  \sf \: roots =  \dfrac{ -   \sqrt{7}±3 \sqrt{7}  }{4}  \\  \\  \\  \sf \: roots =  \dfrac{ -  \sqrt{7}  + 3 \sqrt{7} }{4} , \dfrac{ -  \sqrt{7}  - 3 \sqrt{7} }{4}  \\  \\  \\  \sf \: roots =  \dfrac{2 \sqrt{7} }{4} , \dfrac{ - 4 \sqrt{7} }{4}  \\  \\  \\     \underline{\underline{\boxed{\sf \: roots =  \dfrac{ \sqrt{7} }{2} ,  -  \sqrt{7} }}} \\  \\

Hence , roots are √7/2 , -√7.

Similar questions