Math, asked by nishithamallala, 9 months ago

2x^2-(p+1)x+(p-1)=0.if α-β=αβ,then what is the value of p

Answers

Answered by Abhishek474241
6

Question

2x²-(p+1)X+(p-1)=0 if \alpha-\beta=-\alpha \beta

Given

2x²-(p+1)x+(p-1)=0

\alpha-\beta=-\alpha \beta

To Find

p=?

Solution

Let the zeroes of the polynomial be \alpha \beta

Then,

\alpha+\beta=\frac{-b}{a}=\frac{p+1}{2}

\alpha \beta=\frac{c}{a}=\frac{p-1}{2}

Now,we have to find

(\alpha-\beta

=>(\alpha-\beta)²=(\alpha+\beta)²-4\alpha \beta

=>(\alpha-\beta)²=\frac{p+1}{2}^2-4×\frac{p-1}{2}

=>(\alpha-\beta)²=\frac{p+1}{2}^2-2p+2

=>(\alpha-\beta)²=\frac{p^2+1+2p}{4}-2p-2

=>(\alpha-\beta)²=\frac{p^2+1+2p-8p+8}{4}

=>(\alpha-\beta)²=\frac{p^2+9-6p}{4}

=>(\alpha-\beta)²=(\frac{p-3}{2}

=>(\alpha-\beta)=(\frac{p+3}{2})

Now from given

\alpha-\beta =-\alpha \beta

putting the values

=>\frac{p+3}{2}=(\frac{p-1}{2})

=>p+3=-p+1

=>2p=-2

\because=-1

\boxed{\boxed{AnsweR=-1}}

Answered by amishamohapatra40
0

Answer:

Given,

2x^2-(p+1)x+(p-1)=0

where,

a-b=ab

we have to find,

p=?

Step-by-step explanation:

let the zeros of the polynomial be ab

then,

a+b=-x/y=(p+1)/2

ab=z/y=(p-1)/2

now,

(a-b)^2=(a+b)^2-4ab

= (p+1/2)^2-2(p-1)

=(p^2+1+2p)/4-(2p-2)

=(p^2+1+2p)/4-2p+2

=(p^2+1+2p-8p+8)/4

=(p^2-6p+9)/4

=> (a-b)=√(p^2-6p+9)/4

we know that,

a-b=ab

then,

√(p^2-6p+9)/4=(p-1)/2

after squaring both the side then we get,

=>(p^2-6p+9)/4=[(p-1)/2]^2

=>(p^2-6p+9)/4=(p^2-2p+1)/4

=>p^2-6p+9=p^2-2p+1

=>-6p+2p=1-9

=>-4p=-8

=>p=8/4=2

so,

the value of p is,

p=2

Similar questions