2x^2-(p+1)x+(p-1)=0.if α-β=αβ,then what is the value of p
Answers
Question
2x²-(p+1)X+(p-1)=0 if =-
Given
2x²-(p+1)x+(p-1)=0
=-
To Find
p=?
Solution
Let the zeroes of the polynomial be
Then,
==
==
Now,we have to find
()²
=>()²=()²-4
=>()²=-4×
=>()²=-2p+2
=>()²=-2p-2
=>()²=
=>()²=
=>()²=()²
=>()=()
Now from given
=-
putting the values
=>=()
=>p+3=-p+1
=>2p=-2
=-1
Answer:
Given,
2x^2-(p+1)x+(p-1)=0
where,
a-b=ab
we have to find,
p=?
Step-by-step explanation:
let the zeros of the polynomial be ab
then,
a+b=-x/y=(p+1)/2
ab=z/y=(p-1)/2
now,
(a-b)^2=(a+b)^2-4ab
= (p+1/2)^2-2(p-1)
=(p^2+1+2p)/4-(2p-2)
=(p^2+1+2p)/4-2p+2
=(p^2+1+2p-8p+8)/4
=(p^2-6p+9)/4
=> (a-b)=√(p^2-6p+9)/4
we know that,
a-b=ab
then,
√(p^2-6p+9)/4=(p-1)/2
after squaring both the side then we get,
=>(p^2-6p+9)/4=[(p-1)/2]^2
=>(p^2-6p+9)/4=(p^2-2p+1)/4
=>p^2-6p+9=p^2-2p+1
=>-6p+2p=1-9
=>-4p=-8
=>p=8/4=2
so,
the value of p is,
p=2