Math, asked by Ridip4392, 11 months ago

2x^2-x-3=0 by formula method and completing square method


Answers

Answered by BrainlyConqueror0901
68

Answer:

\huge{\pink{\boxed{\green{\sf{x=-1,\frac{3}{2}}}}}}

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

{\pink{\boxed{\green{\underline{\pink{\sf{METHOD(1)}}}}}}}

 {\pink{ \boxed{ \green{quadratic \: formula}}}} \\ \to  2{x}^{2}  - x - 3 = 0 \\  \to d =  {b}^{2}  - 4ac \\  \to d =  ({ - 1})^{2}  - 4(2 \times  - 3) \\  \to d = 1 - 4 ( - 6) \\  \to d = 1 + 24 \\  { \boxed{\to d = 25}} \\  \\ \to  x = \frac{ -b± \sqrt{d} }{2a}  \\  \to x =  \frac{ - ( - 1)± \sqrt{25} }{2 \times 2}  \\  \to x = \frac{1±5}{4}  \\  \to x = \frac{ - 4}{4}  \\  { \pink{ \boxed{ \green{\to x =  - 1 }}}} -  -  -  -  - 1st \: zeroes \\  \to x =  \frac{1 + 5}{4}  \\ \to x =  \frac{6}{4}  \\  { \pink{ \boxed{ \green{\to x = \frac{3}{2} }}}} -  -  -  -  - 2nd \: zeroes

{\pink{\boxed{\green{\underline{\pink{\sf{SECOND\:METHOD-}}}}}}}

{ \pink{ \boxed{ \green{completing \: square \: method}}}} \\   \to2{x}^{2}  - x - 3 = 0 \\ \to dividing \: both \: side \: by \: coefficient \: of \:  {x}^{2}  \\  \to {x}^{2}  -  \frac{x}{2}  -  \frac{3}{2}  = 0 \\  \to both \: side \: adding \:  (\frac{b}{2a} )^{2}  =  ({ \frac{ - 1}{2 \times 2} })^{2}  =  \frac{1}{16}  \\  \to  {x}^{2}  -   \frac{x}{2}  +   \frac{1}{16}  =  \frac{3}{2}  +  \frac{1}{16}  \\  \to    ({x -  \frac{1}{4} })^{2}  =  \frac{24 + 1}{16}  \\  \to x -  \frac{1}{4}  =  \sqrt{ \frac{25}{16} }   \\  \to x -  \frac{1}{4}  =± \frac{5}{4}  \\  \to x = ± \frac{5}{4}  +  \frac{1}{4}  \\  \to x =  \frac{ - 5 + 1}{4}  \\  \to x =  \frac{ - 4}{4}  \\  { \pink{ \boxed{ \green{\to x =  - 1 }}}} -  -  -  -  - 1st \: zeroes \\  \to x =  \frac{ 5 + 1}{4}  \\  { \pink{ \boxed{ \green{\to x = \frac{3}{2} }}}} -  -  -  -  - 2nd \: zeroes

_________________________________________

Similar questions