Math, asked by sametithirumaniramu, 1 year ago

2x^2+x-4=0 tell in completing squreing​

Answers

Answered by Anonymous
4

\huge\underline\mathfrak\red{Correct\:Question:-}

Find the roots of the following quadratic equation

2 {x}^{2}  + x - 4

by the method of completing the square.

\huge \underline \mathfrak\green{Solution:-}

Given, quadratic equation

2 {x}^{2}  + x - 4 = 0

\implies 2 {x}^{2}  + x =4

Dividing by 2 on both sides

 {x}^{2} + \frac{x}{2} =2

{x}^{2}  +2\times \frac{x}{2} \times 1=2

 {x}^{2} +2\times 1 \times \frac{x}{2} + \frac {{x}{2}}^2-\frac{{x}{2}}^2=2

{{x}+{\frac{x}{2}}}^{2} =2-\frac{x}{2}

{{x}+{\frac{x}{2}}}^{2} =\frac{4-x}{2}

{x}+{\frac{x}{2}} =\squareroot\frac{4-x}{2}

{{x}+{\frac{x}{2}}}^{2} =\frac{4-x}{2}

{{x}+{\frac{x}{2}}}^{2} =\frac{4-x}{2}

Similar questions