2x^2+x-4 by completing squarre method
Answers
Answered by
3
hi!!
here's ur answer...
given :- 2x² + x - 4
=> x² + x/2 - 2 = 0
=> (x + 1/4)² - (1/4)² - 2 = 0
=> (x + 1/4)² - 1/16 - 2 = 0
=> (x + 1/4)² -33/16 = 0
=> (x + 1/4)² = 33/16
=> x + 1/4 = ± √33/4
=> x = -1/4 ± √33/4
x = (-1 + √33)/4 or x = (-1-√33/4)
hope this helps..!!
here's ur answer...
given :- 2x² + x - 4
=> x² + x/2 - 2 = 0
=> (x + 1/4)² - (1/4)² - 2 = 0
=> (x + 1/4)² - 1/16 - 2 = 0
=> (x + 1/4)² -33/16 = 0
=> (x + 1/4)² = 33/16
=> x + 1/4 = ± √33/4
=> x = -1/4 ± √33/4
x = (-1 + √33)/4 or x = (-1-√33/4)
hope this helps..!!
Answered by
3
Given Equation is 2x^2 + x - 4 = 0.
It can be written as :
= > x^2 + (x/2) - (4/2) = 0
= > x^2 + (x/2) - 2 = 0
Adding and subtracting (1/4)^2, we get
= > x^2 + (x/2) - 2 + (1/4)^2 - (1/4)^2 = 0
= > x^2 + (x/2) + (1/4)^2 - 2 - (1/4)^2 = 0
= > (x + 1/4)^2 - 2 - (1/4)^2 = 0
= > (x + 1/4)^2 = 2 + (1/4)^2
= > (x + 1/4)^2 = 2 + (1/16)
= > (x + 1/4)^2 = 33/16
---------------------------------------------------------------------------------------------------------------
(1)
---------------------------------------------------------------------------------------------------------------
(2)
---------------------------------------------------------------------------------------------------------------
Therefore, The values are:
Hope this helps!
siddhartharao77:
Hmmm
Similar questions