Math, asked by Abubakar7336, 1 year ago

2x^2 + x- 6 = 0 by completeing the squares

Answers

Answered by mysticd
0

Answer:

 \implies x =\frac{3}{2}\:Or \:x =-2

Step-by-step explanation:

2x²+x-6=0

=> 2x²+x=6

/* Divide each term by 2, we get

x^{2}+\frac{x}{2}=3

\implies x^{2}+2\times x\times \frac{1}{4}=3

\implies x^{2}+2\times x\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}=3+\left(\frac{1}{4}\right)^{2}

\implies (x+\frac{1}{4})^{2}=3+\frac{1}{16}\\=\frac{48+1}{16}\\=\frac{49}{16}

\implies x+\frac{1}{4}=±\frac{7}{4}

\implies x=-\frac{1}{4}±\frac{7}{4}

\implies x=\frac{-1±7}{4}

 \implies x =\frac{-1+7}{4}\:Or \:x =\frac{-1-7}{4}

 \implies x =\frac{6}{4}\:Or \:x =\frac{-8}{4}

 \implies x =\frac{3}{2}\:Or \:x =-2

•••♪

Similar questions