Math, asked by snehasarkar01, 5 months ago

2x/3+1 = 3/4(x+1)
solve the equation and check the solution.​

Answers

Answered by aryan073
3

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Question :

\pink\bigstar\rm{\dfrac{2x}{3+1}=\dfrac{3}{4(x+1)}}

To find :

The value of x=?

Solution :

 \\  \quad \implies \large \sf \:  \frac{2x}{3 + 1}  =  \frac{3}{4(x + 1)}

  \\ \quad \implies \large \sf \:  \frac{2x}{4}  =  \frac{3}{4x + 4}

  \\ \quad \implies \large \sf \:  \frac{x}{2}  =  \frac{3}{4x + 4}

 \\   \quad\implies \large \sf4 {x}^{2}  + 4x = 6

  \\ \quad \implies \large \sf \: 4 {x}^{2}  + 4x - 6 = 0

 \\  \quad \implies  \large \sf \: 2 {x}^{2}  + 2x - 3 = 0

By using formula method :

 \\  \quad \implies \large \sf \: x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}

  \\ \quad \implies \large \sf \: x =  \frac{ - 2 \pm \sqrt{ {2}^{2}  - 4 \times 2 \times -  3} }{2 \times 2}

  \\ \quad \implies \large \sf \: x =  \frac{ - 2 \pm \sqrt{4  + 24 } }{4}

 \\  \quad \implies \large \sf \: x =  \frac{ - 2 \pm \sqrt{28} }{4}

 \\  \quad \implies \large \sf \: x =  \frac{ \cancel2( - 1 \pm \sqrt{7}) }{ \cancel2 \times 2}

 \\  \implies \large \sf \: x =  \frac{ - 1 \pm \sqrt{7} }{2}

  \red \bigstar \large \sf \: roots \: of \: this \: equation \: is \:  \:  \\  \boxed{ \large \sf \: x =  \frac{ - 1  +  \sqrt{7} }{2}  \: and \: x =  \frac{ - 1 -  \sqrt{7} }{2} }

Similar questions