Math, asked by Shivank720, 9 months ago

(2x+3)^2=25 by formula method

Answers

Answered by Anonymous
6

\huge\boxed{\fcolorbox{blue}{orange}{HELLO\:MATE}}

GIVEN:

(2x+3) ^{2}=25

TO FIND:

The value of x.

SOLUTION:

=>(2x+3) ^{2}=25

=>(2x+3) ^{2}=5^{2}

Eliminating squares both sides,

=>2x+3=5

=>2x = 5-3

=>2x = 2

=> x =\dfrac{2}{2}

=> x =1

Therefore the value of x is 1.

\huge\orange{\boxed{x=1}}

Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:x=1\:and\:-4}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:   \implies  {(2x + 3)}^{2}  = 25 \\  \\\red{\underline \bold{To \: Find:}}  \\  \tt:  \implies Value \: of \: x = ?

• According to given question :

 \tt:  \implies  {(2x + 3)}^{2}  = 25 \\  \\  \tt \circ \: (a + b)^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\  \\  \tt:  \implies 4 {x}^{2}  + 9 + 12x = 25 \\  \\ \tt:  \implies 4 {x}^{2}  + 9 + 12x - 25 = 0 \\  \\ \tt:  \implies 4 {x}^{2}  + 12x - 16 = 0 \\ \\ \tt:  \implies  {x}^{2}  + 3x - 4 = 0 \\ \\  \bold{As \: we \: know \: that}  \\ \tt:  \implies  {x}^{2}  + 4x - x - 4 = 0 \\  \\ \tt:  \implies x(x + 4) - 1(x + 4) = 0 \\  \\ \tt:  \implies (x - 1)(x  + 4) = 0 \\  \\  \green{\tt:  \implies x = 1 \: and \:  - 4}

Similar questions