Math, asked by praneet50, 19 hours ago

2x+3/(2-x)(x^2+3) integration

Answers

Answered by PharohX
1

 \large \green{ \rm \:SOLUTION }

 \sf \blue{ \int \frac{2x + 3}{(2 - x)( {x}^{2}  +  3)} } \\

 \sf \pink{First \:  convert  \: it  \: into \:  partial  \: fraction }

 \sf \blue{  \rightarrow\frac{2x + 3}{(2 - x)( {x}^{2}  +  3)} =  \frac{a}{2 - x} +  \frac{bx + c}{ {x}^{2} + 3 }    } \\

 \sf \blue{  \rightarrow 2x + 3=  a( {x}^{2} + 3) +  (bx + c)(2 - x)    } \\

 \sf \blue{  \rightarrow 2x + 3=  a{x}^{2} + 3a+  2bx + 2c -  {bx}^{2}   - cx   } \\

 \sf \blue{  \rightarrow 2x + 3=  {x}^{2}(a - b) +   (2b - c)x +3a +  2c } \\

 \sf \pink{ Now \:  comparing \:  both  \: sides}

 \sf \orange {\: a - b= 0}

 \sf \orange {\: 2b- c= 2}

 \sf \orange {\: 3a - 2c= 3}

 \sf \orange {\: a = b = 1}

 \sf \orange {\: c=0}

 \sf \blue{  \rightarrow\frac{2x + 3}{(2 - x)( {x}^{2}  +  3)} =  \frac{1}{2 - x} +  \frac{x }{ {x}^{2} + 3 }    } \\

 \sf \blue{  \rightarrow \int\frac{2x + 3}{(2 - x)( {x}^{2}  +  3)} = \int \frac{dx}{2 - x} +   \int\frac{x dx}{ {x}^{2} + 3 }    } \\

 \sf \blue{  = \int \frac{dx}{2 - x} +   \int\frac{x dx}{ {x}^{2} + 3 }    } \\

 \sf \blue{  =  -  log(2 - x) +    \frac{1}{2}  log( {x}^{2}  + 3)    + c  } \\

 \sf \green{ \int \frac{2x + 3}{(2 - x)( {x}^{2}  +  3)} =  -  log(2 - x) +    \frac{1}{2}  log( {x}^{2}  + 3)   + c   } \\

Similar questions