Math, asked by aparna2067, 1 month ago

(2x+3)(2x+5)(x-1)(x-2)=30​

Attachments:

Answers

Answered by MysticSohamS
4

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

to \: find =  \\ values \: of \: x \\  \\ so \: here \:  \\ (2x + 3)(2x + 5)(x - 1)(x - 2) = 30 \\ \\  (2x + 3)(x - 1)(2x + 5)(x - 2) = 30 \\  \\ (2x {}^{2}  - 2x + 3x - 3)(2x {}^{2}  - 4x + 5x - 10) = 30 \\  \\ (2x {}^{2}  + x - 3)(2x {}^{2}  + x - 10) = 30 \\  \\ so \: let \\ 2x {}^{2}  + x = k \\ hence \: accordingly \\  \\ (k - 3)(k - 10) = 30 \\ k {}^{2}  - 10k - 3k  + 30= 30 \\ k {}^{2}  - 13k = 0 \\ ie \:  \: k(k - 13) = 0 \\ so \:  \: k = 0  \:  \: or \:  \: k - 13 = 0 \\  \\ k = 0 \:  \: or \:  \:  k = 13

so \: resubstituting \: value \: of \: k  \: firstly \: as \: 0\:  \\ we \: get \\ 2x {}^{2}  + x = 0 \\ x(2x + 1) = 0 \\  \\ x = 0 \:  \: or \:  \: 2x + 1 = 0 \\  \\ ie \: x = 0 \:  \: or \:  \: x =  \frac{ - 1}{2}

now \: resubstituting \: value \: of \: k \: as \: 13 \\ we \: get \\ 2x {}^{2}  + x = 13 \\  \\ 2x {}^{2}  + x - 13 = 0 \\ comparing \: this \: quadratic \: equation \: with \\ ax {}^{2}  + bx + c = 0 \\ we \: get \\ a = 2 \:  \: b = 1 \:  \: c =  - 13 \\  \\ now \: using \\ Δ = b {}^{2}  - 4ac \\  = (1) {}^{2}  - 4 \times 2 \times ( - 13) \\  =  1 - 8( - 13) \\  = 1 - ( - 104) \\  = 1 + 104 \\  = 105 \\  \\ so \: by \: applying \: formula \: method \\ we \: get \\  \\ x =  \frac{ - b \:± \:  \sqrt{b {}^{2} - 4ac }  }{2a}  \\  \\  =  \frac{ - 1 \:± \:  \sqrt{105}  }{2 \times 2}  \\  \\  \: x =  \frac{ - 1 \: +  \:  \sqrt{105}  }{4}  \:  \:  \:  \: or \:  \:  \: x =  \frac{ - 1 \:  -  \:  \sqrt{105} }{4}

Answered by IqBroly
0

Answer:

(2x + 3) (2x + 5)(x – 1)(x – 2) = 30. {(2x + 3)(x – 1)}{(2x + 5)(x – 2)} = 30. (2x2 – 2x + 3x – 3)(2x2 – 4x + 5x – 10) = 30.

Explanation:

Similar questions