Math, asked by prakash3413, 11 months ago

(2x+3)(2x+5)(x-1)(x-2)=30 the roots available are​

Answers

Answered by shr279
7

Answer:

if LHS=RHS you should,

2x+3+2x+5+x-1+x-2=30

4x+8+x-1+x-2=30

6x+8-3=30

6x+5=30

6x=30-5

6x=25

x=25/6

x=4

so substitute 4 in all x and find value

Answered by charliejaguars2002
18

Answer:

\large\boxed{X=0,X=\frac{1}{2},X=\frac{-1+\sqrt{105} }{4},X=\frac{-1-\sqrt{105} }{4}    }

Step-by-step explanation:

\textnormal{To find the value of x, first, you have to isolate it on one side of the equation.}

First, expand the form to solve with distributive property.

\textnormal{Distributive property=\boxed{a(b+c)=ab+ac}}.

\displaystyle (2x+3)(2x+5)(x-1)(x-2)=4x^2+4x^3-25x^2-13x+30

Next, rewrite the problem down.

\displaystyle 4x^4+4x^3-25x^2-13x+30=30

Then, subtract 30 from both sides.

\displaystyle 4x^4+4x^3-25x^2-13x+30-30=30-30

Solve.

\displaystyle 30-30=0

\displaystyle 4x^4+4x^3-25x^2-13x=0

You can also solve by the factors.

\displaystyle 4x^4+4x^3-25x^2-13x=x(2x+1)(2x^2+x-13)

\displaystyle 4x^4+4x^3-25x^2-13x

Factor it out by the common term of x.

\displaystyle x(4x^3+4x^2-25x-13)

\displaystyle4x^3+4x^2-25x-13=(2x+1)(2x^2+x-13)

\displaystyle(2x+1)2x^2+x-13=0

Solve.

\displaystyle 2x+1=0

Subtract 1 from both sides.

\displaystyle 2x+1-1=0-1

Solve.

\displaystyle 2x=-1

Divide by 2 from both sides.

\displaystyle \frac{2x}{2}=\frac{-1}{2}

Solve.

\displaystyle x=-\frac{1}{2}

Solve with \displaystyle2x^2+x-13=0.

\displaystyle 2x^2+x-13=0=\boxed{X=\frac{-1+\sqrt{105} }{4}, X=\frac{-1-\sqrt{105} }{4}  }

\boxed{\textnormal{Therefore, the correct answer is \boxed{X=0, X=-\frac{1}{2}, X=\frac{-1+\sqrt{105} }{4}, X=\frac{-1-\sqrt{105} }{4}   }}}.

Similar questions