Math, asked by dr0strange777999, 1 year ago

2x^3 - 5x^2 - 19x + 42​

Answers

Answered by Aɾꜱɦ
3

Answer:

\huge\underline\textsf{Question:- }

\boxed{\sf2x ^{3}  - 5x {}^{2}  - 19x + 42}

\huge\underline\textsf{Explantion:- }

\leadsto\sf\red{2x {}^{3}  - 4x {}^{2}  - x {}^{2}  + 2x - 21x + 42}

\leadsto\sf\orange{2x {}^{2} (x - 2) - x(x - 2) - 21(x - 2)}

\leadsto\sf\purple{(x - 2)(2x {}^{2}  - x - 2)}

\leadsto\sf\blue{(x - 2)(2x {}^{2}  + 6x - 7x - 21)}

\leadsto\sf\pink{(x - 2)(2x {}^{2}  + 6x - 7x - 21)}

\leadsto\sf\orange{(x - 2)[(2x(x + 3) - 7(x + 3)]}

\leadsto\sf\red{(x - 2)(2x - 7)(x + 3)}

\large\underline\textsf{\green{Ans.(x - 2)(2x - 7)(x + 3)} }

Answered by TRISHNADEVI
7

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \underline {\huge{ \sf{ \:  \: TO  \:  \:  FACTORISE : \leadsto \: }}}

 \: \: \: \: \tt{\red{ 2x {}^{3}  - 5x {}^{2}  - 19x + 42}} \\   \\ \tt{ =  2x {}^{3}  - (4x {}^{2}  - x {}^{2}   )+ (2x -21x )+ 42 }\\  \\ \tt{ = 2x {}^{3}  - 4x {}^{2}  - x {}^{2}  + 2x -21x + 42} \\  \\ \tt{   = 2x {}^{2} (x - 2) - x(x - 2) - 21( x - 2)} \\  \\ \tt{  = (x - 2)(2x {}^{2}  - x - 21) }\\  \\ \tt{  = (x - 2)[2x {}^{2}  - (7 - 6)x - 21]} \\  \\  \tt{ = (x - 2)(2x {}^{2}  - 7x + 6x - 21)} \\  \\ \tt{ = ( x - 2)[x(2x - 7)  +  3(2x  - 7)] }\\  \\ \tt{ =  \red{(x - 2)(x + 3)(2x - 7)}}

Similar questions