Math, asked by anuragdhende, 2 months ago

2x-3/x+1<=1 solve the inequalities​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\dfrac{2x - 3}{x + 1} \leqslant 1  \:  \: and \: x \:  \ne \:  \:  - 1

\rm :\longmapsto\:\dfrac{2x - 3}{x + 1} - 1 \leqslant0

\rm :\longmapsto\:\dfrac{2x - 3 - (x + 1)}{x + 1}\leqslant0

\rm :\longmapsto\:\dfrac{2x - 3 - x - 1}{x + 1}\leqslant0

\rm :\longmapsto\:\dfrac{x - 4}{x + 1}\leqslant0

\rm :\longmapsto\:\dfrac{(x - 4)(x + 1)}{ {(x + 1)}^{2} }\leqslant0

\bf\implies \:x \:  \in \:  - 1 &lt; x \leqslant 4

\bf\implies \:x \:  \in \: ( - 1, \: 4]

Additional information :-

\rm :\longmapsto\:A &lt; B\bf\implies \: - A &gt;  - B

\rm :\longmapsto\:A  &gt;  B\bf\implies \: - A  &lt;   - B

\rm :\longmapsto\:A   \leqslant   B\bf\implies \: - A   \geqslant    - B

\rm :\longmapsto\:A   \geqslant   B\bf\implies \: - A   \leqslant    - B

\rm :\longmapsto\:A &lt; -  B\bf\implies \: -  \: A &gt;   B

\rm :\longmapsto\:A  &gt;  -  B\bf\implies \: -  \: A  &lt;    B

Similar questions