2x+3(x^2-2x-3) partial fraction
Answers
Let I=
Let I=x
Let I=x2
Let I=x2+2x−3
Let I=x2+2x−32x
Let I=x2+2x−32x2
Let I=x2+2x−32x2+5x−11
Let I=x2+2x−32x2+5x−11=
Let I=x2+2x−32x2+5x−11=x
Let I=x2+2x−32x2+5x−11=x2
Let I=x2+2x−32x2+5x−11=x2+2x−3
Let I=x2+2x−32x2+5x−11=x2+2x−32(x
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)x−5
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)x−5Now
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)x−5Now(x+3)(x−1)
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)x−5Now(x+3)(x−1)x−5
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)x−5Now(x+3)(x−1)x−5=
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)x−5Now(x+3)(x−1)x−5=(x−1)
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)x−5Now(x+3)(x−1)x−5=(x−1)A
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)x−5Now(x+3)(x−1)x−5=(x−1)A+
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)x−5Now(x+3)(x−1)x−5=(x−1)A+(x+3)
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)x−5Now(x+3)(x−1)x−5=(x−1)A+(x+3)B
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)x−5Now(x+3)(x−1)x−5=(x−1)A+(x+3)B⇒x−5=A(x+3)+B(x−1)
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)x−5Now(x+3)(x−1)x−5=(x−1)A+(x+3)B⇒x−5=A(x+3)+B(x−1)On comparing coefficients we get
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)x−5Now(x+3)(x−1)x−5=(x−1)A+(x+3)B⇒x−5=A(x+3)+B(x−1)On comparing coefficients we get1=A+B,−5=3A−B
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)x−5Now(x+3)(x−1)x−5=(x−1)A+(x+3)B⇒x−5=A(x+3)+B(x−1)On comparing coefficients we get1=A+B,−5=3A−B⇒A=−1,B=2
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)x−5Now(x+3)(x−1)x−5=(x−1)A+(x+3)B⇒x−5=A(x+3)+B(x−1)On comparing coefficients we get1=A+B,−5=3A−B⇒A=−1,B=2Therefore
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)x−5Now(x+3)(x−1)x−5=(x−1)A+(x+3)B⇒x−5=A(x+3)+B(x−1)On comparing coefficients we get1=A+B,−5=3A−B⇒A=−1,B=2ThereforeI=2−
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)x−5Now(x+3)(x−1)x−5=(x−1)A+(x+3)B⇒x−5=A(x+3)+B(x−1)On comparing coefficients we get1=A+B,−5=3A−B⇒A=−1,B=2ThereforeI=2−x−1
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)x−5Now(x+3)(x−1)x−5=(x−1)A+(x+3)B⇒x−5=A(x+3)+B(x−1)On comparing coefficients we get1=A+B,−5=3A−B⇒A=−1,B=2ThereforeI=2−x−11
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)x−5Now(x+3)(x−1)x−5=(x−1)A+(x+3)B⇒x−5=A(x+3)+B(x−1)On comparing coefficients we get1=A+B,−5=3A−B⇒A=−1,B=2ThereforeI=2−x−11+
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)x−5Now(x+3)(x−1)x−5=(x−1)A+(x+3)B⇒x−5=A(x+3)+B(x−1)On comparing coefficients we get1=A+B,−5=3A−B⇒A=−1,B=2ThereforeI=2−x−11+x+3
Let I=x2+2x−32x2+5x−11=x2+2x−32(x2+2x−3)+x−5=2+x2+2x−3x−5=2+(x+3)(x−1)x−5Now(x+3)(x−1)x−5=(x−1)A+(x+3)B⇒x−5=A(x+3)+B(x−1)On comparing coefficients we get1=A+B,−5=3A−B⇒A=−1,B=2ThereforeI=2−x−11+x+32
Step-by-step explanation:
#Hope you have satisfied with this answer.
Answer:
Let I=
x
2
+2x−3
2x
2
+5x−11
=
x
2
+2x−3
2(x
2
+2x−3)+x−5
=2+
x
2
+2x−3
x−5
=2+
(x+3)(x−1)
x−5
Now
(x+3)(x−1)
x−5
=
(x−1)
A
+
(x+3)
B
⇒x−5=A(x+3)+B(x−1)
On comparing coefficients we get
1=A+B,−5=3A−B
⇒A=−1,B=2
Therefore
I=2−
x−1
1
+
x+3
2