Math, asked by bpatidar972, 16 days ago

2x/3 – x/2 = 30 solve the following equation and check ​

Answers

Answered by PharohX
4

Answer:

 \sf \:  \frac{2x}{3}  -  \frac{x}{2}  = 30 \\

 \sf \:  \frac{4x  -3x }{6}  = 30 \\

 \sf \:  \frac{x}{6}  = 30 \\

 \sf \: x= 30  \times 6\\

 \sf \: x= 180\\

Hope it help.

Answered by Anonymous
34

Given :

  •  \sf{ \dfrac{2x}{3} - \dfrac{x}{2} = 30 }

 \\ \\

To Find :

  • Solve it and Check the Answer

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN :

 \maltese \; {\underline{\textbf{\textsf{ Solving \; the \; Equation \; :- }}}}

 \longmapsto We have the Equation :

 \qquad \dashrightarrow \;  {\underline{\boxed  {\pmb{\sf { \dfrac{2x}{3} - \dfrac{x}{2} = 30 }}}}} \\ \\

 \longmapsto LCM of 3 and 2 is 6 :

 \qquad \dashrightarrow \;  {\underline{\boxed  {\pmb{\sf { \dfrac{2x}{6} - \dfrac{x}{6} = 30 }}}}} \\ \\

 \longmapsto So the Value of Numerator will be :

 \qquad \dashrightarrow \;  {\underline{\boxed  {\pmb{\sf { \dfrac{4x}{6} - \dfrac{3x}{6} = 30 }}}}} \\ \\

 \longmapsto On Subtracting we have :

 \qquad \dashrightarrow \;  {\underline{\boxed  {\pmb{\sf { \dfrac{x}{6} = 30 }}}}} \\ \\

 \longmapsto Transporting 6 to RHS Side :

 \qquad \dashrightarrow \;  {\underline{\boxed  {\pmb{\sf { x = 30 \times 6 }}}}} \\ \\

 \longmapsto We get the Answer :

 \qquad \dashrightarrow \;  {\underline{\boxed  {\pmb{\sf { x = 180 }}}}} \; {\red{\bigstar}} \\ \\

 \\ \\

 \maltese \; {\underline{\textbf{\textsf{ Checking \; the \; Answer \; :- }}}}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \dfrac{2x}{3} - \dfrac{x}{2} = 30 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \dfrac{ ( 2 \times 180) }{3} - \dfrac{180}{2} = 30 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \dfrac{ 360 }{3} - \dfrac{180}{2} = 30 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \dfrac{ 360 }{6} - \dfrac{180}{6} = 30 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \dfrac{ 360 - 180 }{6} = 30 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \dfrac{ 180 }{6} = 30 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \cancel\dfrac{ 180 }{6} = 30 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { 30 = 30 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; {\underline{\boxed{\pmb{\sf{ LHS = RHS }}}}} \; {\purple{\bigstar}} \\ \\ \\ \end{gathered}

HENCE , VERIFIED ...!!

 \\ \\

 \therefore \; Required Answer is 180 .

 \\ \qquad{\rule{200pt}{2pt}}

Similar questions