Math, asked by bhowmikvaswati, 1 month ago

2x+3/y=5, 5x+2/y=3 by elimination method​

Answers

Answered by Rahul74684
1

Step-by-step explanation:

PLEASE MARK ME AS THE BRAINLIEST

Attachments:
Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given pair of equations are

\rm :\longmapsto\:2x + \dfrac{3}{y} = 5 -  -  - (1)

and

\rm :\longmapsto\:5x + \dfrac{2}{y} = 3 -  -  - (2)

On multiply equation (1) by 2 and equation (2) by 3, we get

\rm :\longmapsto\:4x + \dfrac{6}{y} = 10 -  -  - (3)

and

\rm :\longmapsto\:15x + \dfrac{6}{y} = 9 -  -  - (4)

On Subtracting equation (4) from equation (3), we get

\rm :\longmapsto\: - 11x = 1

\rm \implies\:\boxed{ \tt{ \: x \:  =  \:  -  \:  \frac{1}{11} \: }}

On substituting the value of x in equation (1), we get

\rm :\longmapsto\:\dfrac{ - 2}{11}  + \dfrac{3}{y} = 5

\rm :\longmapsto\: \dfrac{3}{y} = 5  + \dfrac{2}{11}

\rm :\longmapsto\: \dfrac{3}{y} =  \dfrac{55 + 2}{11}

\rm :\longmapsto\: \dfrac{3}{y} =  \dfrac{57}{11}

\rm :\longmapsto\: \dfrac{1}{y} =  \dfrac{19}{11}

\rm \implies\:\boxed{ \tt{ \: y \:  =   \:  \frac{11}{19} \: }}

Therefore,

 \red{\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:-\begin{cases} &\bf{x =  -  \: \dfrac{1}{11} }  \\ \\ &\bf{y =  \: \dfrac{11}{19} } \end{cases}\end{gathered}\end{gathered}}

Verification

Consider the equation

\rm :\longmapsto\:2x + \dfrac{3}{y} = 5

On substituting the values of x and y, we get

\rm :\longmapsto\:\dfrac{ - 2}{11}  + \dfrac{3 \times 19}{11} = 5

\rm :\longmapsto\:\dfrac{ - 2}{11}  + \dfrac{57}{11} = 5

\rm :\longmapsto\: \dfrac{ - 2 + 57}{11} = 5

\rm :\longmapsto\: \dfrac{55}{11} = 5

\bf\implies \:5 = 5

Hence, Verified

Similar questions