(2x + 35
А
2. In a parallelogram ABCD, if ZA = (2x + 35) and ZC = (3x - 5).
Find : (i) the value of x (ii) measure of each angle of ABCD.
(Hint: ZA = ZC, ZB = ZD and ZA + B + ZC + ZD = 360°.)
Answers
Answered by
18
answer
Step-by-step explanation:
Given : In a parallelogram ∠A =(2x + 35), ∠C= (3x - 5)
To find : Value of x, m ∠A , m ∠B , m ∠C, m ∠D=?
Solution:
Quadrilateral ABCD is A parallelogram.
∴∠A=∠C Opposite angles of parallelogram
∴ 2x + 35 = 3x - 5
∴ 35 + 5 = 3x - 2x
∴ 40 = x
∴ x = 40
∴∠A = ∠C = 2x + 35
= 2 x 40 +35
= 80 + 35
∴ ∠A= ∠C = 115°
Adjacent angles of parallelogram are Supplementary
∴ ∠A + ∠B = 180°
∴ 115 + ∠B = 180
∴ ∠B = 180 - 115
∴ ∠B = 65°
∠B = ∠D = 65° Opposite angles of parallelogram.
∴ X = 40
∴m ∠A = m ∠C = 115°
∴m ∠B = m ∠D = 65°
Similar questions