Math, asked by harikrishnan71, 8 months ago

√2x + √3y = 0 , √3 x - √8 y = 0 solve by substituting​

Answers

Answered by naman6197
0

Answer:

please mark as brainlist answer

Step-by-step explanation:

Given:

√2x+√3y=0

√3x-√8y=0

To find:

solve by substitution method.

Solution:

Let,

\begin{gathered}\sqrt{2}x+\sqrt{3}y=0.......(a)\\\\\sqrt{3}x-\sqrt{8}y=0......(b)\\\end{gathered}

2

x+

3

y=0.......(a)

3

x−

8

y=0......(b)

Solve equation (a) and put the value in the equation (b):

\begin{gathered}\to \sqrt{2}x+\sqrt{3}y=0\\\\\to \sqrt{2}x=-\sqrt{3}y\\\\\to x=-\frac{\sqrt{3} y}{\sqrt{2}}\\\\\to x=-\frac{\sqrt{3} y}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}\\\\\to x=-\frac{\sqrt{3}\sqrt{2} y}{2} \\\\\to x=-\frac{\sqrt{6} y}{2} \\\\\end{gathered}

2

x+

3

y=0

2

x=−

3

y

→x=−

2

3

y

→x=−

2

3

y

×

2

2

→x=−

2

3

2

y

→x=−

2

6

y

equation (b):

\begin{gathered}\to \sqrt{3}x-\sqrt{8}y=0\\\\\end{gathered}

3

x−

8

y=0

\begin{gathered}\to \sqrt{3}(-\frac{\sqrt{6}y}{{2}})-\sqrt{8}y=0\\\\\to - \sqrt{3}(\frac{\sqrt{3} \times \sqrt{2} y}{{2}})-\sqrt{8}y=0\\\\\to -\frac{3 \sqrt{2} y}{{2}}-2\sqrt{2}y=0\\\\\to \frac{-3 \sqrt{2}y-4\sqrt{2}y}{2}=0\\\\\to \frac{-3 \sqrt{2}y-4\sqrt{2}y}{2}=0\\\\\to -\sqrt{2}y(\frac{3+4}{2})=0\\\\\to -\sqrt{2}y(\frac{7}{2})=0\\\\\to y= - \frac{2}{7\sqrt{2}}\\\\\to y= - \frac{2}{7\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}\\\\\to y= - \frac{2\sqrt{2}}{7\times 2} \\\\\to y= - \frac{\sqrt{2}}{7} \\\\\end{gathered}

3

(−

2

6

y

)−

8

y=0

→−

3

(

2

3

×

2

y

)−

8

y=0

→−

2

3

2

y

−2

2

y=0

2

−3

2

y−4

2

y

=0

2

−3

2

y−4

2

y

=0

→−

2

y(

2

3+4

)=0

→−

2

y(

2

7

)=0

→y=−

7

2

2

→y=−

7

2

2

×

2

2

→y=−

7×2

2

2

→y=−

7

2

put the value of y into the equation (a):

Equation (a):

\to \sqrt{2}x+\sqrt{3}y=0→

2

x+

3

y=0

\begin{gathered}\to \sqrt{2}x+\sqrt{3} \times (-\frac{\sqrt{2}}{7})=0\\\\\to \sqrt{2}x- \frac{\sqrt{2}\sqrt{3}}{7}=0\\\\\to \sqrt{2}x- \frac{\sqrt{3}\sqrt{2}}{7}=0\\\\\to \sqrt{2}x = \frac{\sqrt{3}\sqrt{2}}{7}\\\\\to x = \frac{\sqrt{3}\sqrt{2}}{7 \sqrt{2}}\\\\\to x = \frac{\sqrt{3}}{7}\\\\\end{gathered}

2

x+

3

×(−

7

2

)=0

2

x−

7

2

3

=0

2

x−

7

3

2

=0

2

x=

7

3

2

→x=

7

2

3

2

→x=

7

3

The final value of x and y is: \begin{gathered}\bold{-\frac{\sqrt{2}}{7} \ \ _{and} \ \ \frac{\sqrt{3}}{7}}\\\end{gathered}

7

2

and

7

3

Similar questions