Math, asked by iammad23, 8 months ago

2x-3y=1 3x-4y =1 solve by elimination method

Answers

Answered by Bᴇʏᴏɴᴅᴇʀ
25

Answer:-

\pink{\bigstar}\large\boxed{\rm\purple{x = \dfrac{7}{17}}}

\pink{\bigstar}\large\boxed{\rm\purple{y = \dfrac{-1}{17}}}

Given:-

\sf{2x - 3y = 1}\dashrightarrow\bf\red{[eqn.i]}

\sf{3x - 4y = 1}\dashrightarrow\bf\red{[eqn.ii]}

To Find:-

Value of x and y.

Method:-

\sf{Elimination \: Method}

Solution:-

Firstly,

Multiplying eqn[i] by 4 and eqn.[ii] by 3:-

\sf{4(2x - 3y = 1)}

\sf{8x - 12y = 4}\dashrightarrow\bf\red{[eqn.iii]}

\sf{3(3x - 4y = 1)}

\sf{9x - 12y = 3}\dashrightarrow\bf\red{[eqn.iv]}

Adding eqn.[iii] and eqn.[iv]:-

\sf{8x - 12y + (9x - 12y) = 4 + 3}

\sf{8x - 12y + 9x - 12y = 7}

\sf{8x + 9x = 7}

\sf{17x = 7}

\large\bf\green{x = \dfrac{7}{17}}

Substituting the value of x in eqn.[i]:-

\sf{2x - 3y = 1}

\sf{2 \times \dfrac{7}{17} - 3y = 1} \\

\sf{\dfrac{14}{17} - 3y = 1} \\

\sf{\dfrac{14}{17} - 1 = 3y } \\

\sf{\dfrac{14-17}{17} = 3y} \\

\sf{\dfrac{-3}{17} = 3y } \\

\sf{y = \dfrac{-3}{17 \times 3}} \\

\large\bf\green{y = \dfrac{-1}{17}}

Similar questions