Math, asked by vrgowshiga, 2 months ago

2x+3y=13
-7x-y=20solve by substitution method​

Answers

Answered by Flaunt
8

Given

\sf \: 2x + 3y = 13

\sf \:  - 7x - y = 20

To Find

Value of x and y

\sf\huge {\underline{\underline{{Solution}}}}

\sf\implies 2x + 3y = 13 -  - (1)

\sf\implies  - 7x - y = 20 -  - (2)

To solve both Equations by substitution method.

How to solve:

step 1:Convert any of the Equation either in the form of x or y .

Step 2:After converting into form put this into another equation to find another Variable.

Step 3: Now ,if one variable found then again put /substitute into step 1.

From equation 1

\sf  \boxed{\red{\: x =  \dfrac{13 - 3y}{2} } -  - (3)}

Now,put X's value into equation 2

\sf\implies  - 7 \bigg( \dfrac{13 - 3y}{2}  \bigg) - y = 20

\sf\implies  \dfrac{ -91 + 21y}{2}  - y = 20

\sf\implies  \dfrac{ - 91 + 21y - 2y}{2}  = 20

\sf\implies  \dfrac{ - 91 + 19y}{2} = 20

Now,cross multiply to both sides

\sf\implies  - 91 + 19y = 2 \times 20

\sf\implies  - 91 + 19y = 40

\sf\implies 19y = 40 + 91

\sf\implies 19y = 131

\sf\boxed{  \blue{\: y =  \dfrac{131}{19} }}

Now,put y's into Equation 3

\sf\implies  \: x =  \dfrac{13 - 3y}{2}

\sf \large\implies  \dfrac{13 - 3( \frac{131}{19} )}{2}

\sf\implies  \dfrac{13  -  \dfrac{393}{19} }{2}

\sf\implies  \dfrac{247 - 393}{ \dfrac{19}{2} }

\sf\implies \: x =   \dfrac{ - 146}{38}  =  -  \dfrac{73}{19}

\sf\boxed{ \:  \green{x =  -  \dfrac{73}{19}} }

Check:

\sf\implies 2x + 3y =  \orange{13}

Taking LHS

\sf\implies 2 \bigg( -  \dfrac{73}{19}  \bigg) + 3 \bigg( \dfrac{131}{19}  \bigg)

\sf\implies  \dfrac{ - 146 + 393}{19}

\sf\implies  \dfrac{247}{19}  =  \orange{13}

Since,LHS = RHS(Verified)

Answered by vaishnavisinghscpl45
1

Answer↓

 \frac{247}{19}

=13

Similar questions