Math, asked by subassr310, 1 month ago

2x+3y=13and 5x-4y=-2 by cross mult
iply

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given pair of linear equations is

\rm :\longmapsto\:2x + 3y = 13

and

\rm :\longmapsto\:5x - 4y =  - 2

Now, Using Cross Multiplication method, we have

 \red{\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf 3 & \sf 13 & \sf 2 & \sf 3\\ \\ \sf  - 4 & \sf  - 2 & \sf 5 & \sf  - 4\\ \end{array}} \\ \end{gathered}}

So,

 \purple{\rm :\longmapsto\:\dfrac{x}{ - 6 - ( - 52)}  = \dfrac{y}{65 - ( - 4)}  = \dfrac{ - 1}{ - 8 - 15} }

 \purple{\rm :\longmapsto\:\dfrac{x}{ - 6 + 52}  = \dfrac{y}{65 + 4}  = \dfrac{ - 1}{ -23} }

 \purple{\rm :\longmapsto\:\dfrac{x}{46}  = \dfrac{y}{69}  = \dfrac{1}{23} }

On taking first and third member, we get

 \purple{\rm :\longmapsto\:\dfrac{x}{46} = \dfrac{1}{23} }

 \purple{\bf\implies \:x = 2 }

On taking second and third member, we get

 \purple{\rm :\longmapsto\: \dfrac{y}{69}  = \dfrac{1}{23} }

 \purple{\bf\implies \:y = 3 }

So, Solution is

 \green{\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\bf{x = 2} \\ \\  &\bf{y = 3} \end{cases}\end{gathered}\end{gathered}}

Verification :-

Consider Equation (1), we have

 \blue{\rm :\longmapsto\:2x + 3y = 13}

On substituting the values of x and y, we get

 \blue{\rm :\longmapsto\:2 \times 2 + 3 \times 3 = 13}

 \blue{\rm :\longmapsto\:4 + 9 = 13}

 \blue{\bf\implies \:13 = 13}

Hence, Verified

Now, Consider Equation (2), we have

 \pink{\rm :\longmapsto\:5x - 4y =  - 2}

On substituting the values of x and y, we get

 \pink{\rm :\longmapsto\:5 \times 2 - 4 \times 3 =  - 2}

 \pink{\rm :\longmapsto\:10 - 12 =  - 2}

 \pink{\bf\implies \: - 2 =  - 2}

Hence, Verified

Similar questions