Math, asked by sashwathi24, 4 months ago

2x-3y=14 and 5x-2y=16.substituting​

Answers

Answered by XxxRAJxxX
1

 \huge{【{\red{ᴀɴꜱᴡᴇʀ}}】}

2x - 3y = 14 ....(i)

5x - 2y = 16 ....(ii)

From equation (i),

\implies 2x - 3y = 14

\implies 2x = 3y + 14

\implies \bf x = \frac{3y + 14}{2} ....(a)

Now,

Substituting this value of x from (a) in equation (ii),

 \therefore \rm 5(\frac{3y + 14}{2}) - 2y = 16

 \implies \rm \frac{15y + 70}{2} - 2y = 16

 \implies \rm (\frac{15y + 70}{2}) - (\frac{2y}{1} \times \frac{2}{2}) = 16

 \implies \rm  \frac{15y + 70}{2} - \frac{4y}{2} = 16

 \implies \rm \frac{15y + 70 - 4y}{2} = 16

 \implies \rm \frac{11y + 70}{2} = 16

 \implies \rm 11y + 70 = 16 \times 2

 \implies \rm 11y + 70 = 32

 \implies \rm 11y = 32 - 70

 \implies \rm 11y = -38

 \implies \rm \bf y = \frac{-38}{11}

Substituting this value of y in equation,

 \therefore \rm x = \frac{3(\frac{-38}{11}) + 14}{2}

 \implies \rm x = \frac{\frac{-114}{11} + 14}{2}

 \implies \rm x = \frac{\frac{-114}{11} + \frac{14 \times 11}{11}}{2}

 \implies \rm x = \frac{\frac{-114}{11} + \frac{154}{11}}{2}

 \implies \rm x = \frac{\frac{40}{11}}{2}

 \implies \rm x = \frac{40}{11} \times \frac{1}{2}

 \implies \rm x = \frac{\cancel{40}}{11} \times \frac{1}{\cancel{2}}

 \implies \rm \bf x = \frac{20}{11}

Hence, the value of x = 20/11 and y = -38/11.

Similar questions