Political Science, asked by vandanapargaonkar060, 2 months ago

2x+3y=2 ; x-y/2=1/2 solve the following simultaneous equations using cramer's rule​

Answers

Answered by vishalverma5690
3

Answer:

tIn attachment ur answers is given see it

Attachments:
Answered by mathdude500
18

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:2x + 3y = 2 -  -  - (1)

and

\rm :\longmapsto\:x - \dfrac{y}{2} = \dfrac{1}{2}

can be rewritten as

\rm :\longmapsto\:2x - y = 1 -  -  - (2)

Now, matrix form of above equations is

\rm :\longmapsto\:A = \begin{bmatrix} 2 &  3\\ 2 &  - 1\end{bmatrix}

\begin{gathered}\sf\rm :\longmapsto\: B=\left[\begin{array}{c}2\\1\ \\ \end{array}\right]\end{gathered}

\begin{gathered}\sf \rm :\longmapsto\:X=\left[\begin{array}{c}x\\y\end{array}\right]\end{gathered}

So,

\rm :\implies\:AX = B

Now,

\rm :\longmapsto\: |A| = \begin{array}{|cc|}\sf 2 &\sf 3  \\ \sf 2 &\sf  - 1 \\\end{array}

 \rm \:  \:  =  \:  - 2 - 6

 \rm \:  \:  =  \:  - 8

\bf\implies \: |A|  =  - 8 \:  \ne \: 0

System of equations is consistent having unique solution.

Consider,

\rm :\longmapsto\:D_1 = \begin{array}{|cc|}\sf 2 &\sf 3  \\ \sf 1 &\sf  - 1 \\\end{array}

 \rm \:  \:  =  \:  - 2 - 3

 \rm \:  \:  =  \:  - 5

\bf\implies \:D_1 =  -  \: 5

Consider,

\rm :\longmapsto\:D_2 = \begin{array}{|cc|}\sf 2 &\sf 2  \\ \sf 2 &\sf 1 \\\end{array}

 \rm \:  \:  =  \: 2 - 4

 \rm \:  \:  =  \:  - 2

\bf\implies \:D_2 =  -  \: 2

So,

By Cramer's Rule,

\bf :\longmapsto\:x = \dfrac{D_1}{ |A| }  = \dfrac{ - 5}{ - 8}  = \dfrac{5}{8}

\bf :\longmapsto\:y = \dfrac{D_2}{ |A| }  = \dfrac{ - 2}{ - 8}  = \dfrac{1}{4}

Similar questions