Math, asked by anilpbu, 8 months ago

√2x+√3y=√3 ,√2x-√3y=√2
Plz solve this linear equation with 2 variables with method.

Answers

Answered by AlluringNightingale
2

Answer :

x = (√3 + √2)/2√2

y = (√3 - √2)/2√3

Solution :

Here ,

The given equations are ;

√2x + √3y = √3 -------(1)

√2x - √3y = √2 -------(2)

Now ,

Adding eq-(1) and (2) , we get ;

=> √2x + √3y + √2x - √3y = √3 + √2

=> 2√2x = √3 + √2

=> x = (√3 + √2)/2√2

Now ,

Subtracting eq-(2) from (1) , we get ;

=> (√2x + √3y) - (√2x - √3y) = √3 - √2

=> √2x + √3y - √2x + √3y = √3 - √2

=> 2√3y = √3 - √2

=> y = (√3 - √2)/2√3

Hence ,

x = (√3 + √2)/2√2

y = (√3 - √2)/2√3

Answered by Anonymous
1

Solution:-

√2x + √3y = √3 ..........(i) eq

√2x - √3y = √2 ...........(ii) eq

By using elimination method , we get

Add (i) eq and (ii) eq , we get

√2x + √3y + √2x - √3y = √3 + √2

2√2x = √3 + √2

 \bf \: x =  \frac{ \sqrt{3} +  \sqrt{2}  }{2 \sqrt{2} }

Now put the value of x on (i) eq, we get

  \bf\sqrt{2}  \times  \frac{ \sqrt{3}  +  \sqrt{2} }{2 \sqrt{2} }  +  \sqrt{3} y =  \sqrt{3}

\frac{ \sqrt{3}  +  \sqrt{2} }{2  }  +  \sqrt{3} y =  \sqrt{3}

Now taking lcm

 \bf\frac{ \sqrt{3}  +  \sqrt{2} +  2\sqrt{3}y  }{2  } =  \sqrt{3}

 \bf \:   \sqrt{3}  +  \sqrt{2}  + 2 \sqrt{3} y = 2 \sqrt{3}

 \bf \:  \sqrt{2}  + 2 \sqrt{3} y =  \sqrt{3}

 \bf \: 2 \sqrt{3} y =  \sqrt{3}  -  \sqrt{2}

 \bf \:y =   \frac{ \sqrt{3} -  \sqrt{2}  }{2 \sqrt{2} }

 \bf  \: { \green{value \: of \: \bf \: x =  \frac{ \sqrt{3} +  \sqrt{2}  }{2 \sqrt{2} }  \: and \:   \bf \:y =   \frac{ \sqrt{3} -  \sqrt{2}  }{2 \sqrt{2} } }}

Similar questions