Art, asked by aishaprakash, 1 year ago

2x-3y=4 then find the value of 8x^3-27y^3-72xy

Answers

Answered by onlinewithmahesh
1

HERE

2X-3Y=4

NOW

8X^3-27Y^3-72XY

=(2X)^3-(3Y)^3-72XY

=[(2X-3Y)(4X^2+6XY+3Y^2)]-72XY

=4[(2X)^2+(3Y)^2+6XY)-72XY

=4[(2X-3Y)^2+12XY+6XY)-72XY

=4(4^2+18XY)-72XY

=4(16+18XY)-72XY

=64+72XY-72XY

=64


aishaprakash: thanks
onlinewithmahesh: Ur welcome
onlinewithmahesh: Pls mark it as brainliest
Answered by Salmonpanna2022
0

Explanation:

 \bf \underline{Given-} \\

\textsf{2x - 3y = 4}\\

 \bf \underline{To\: find-} \\

\textsf{the value of 8x³ - 27y³ - 72xy = ?}\\

 \bf \underline{Solution-} \\

\textsf{We have,}\\

\textsf{2x - 3y = 4}\\

\textsf{Cubing on both sides, we get}\\

\textsf{(2x - 3y)³ = (4)³}\\

\textsf{★Now, comparing the given expression with (a-b)³, we get}\\

\textsf{\: \: \: \: \: a = 2x and b = 3y.}\\

\textsf{★Using identity (a-b)³ = a³-b³-3ab(a-b), we have}\\

\textsf{(2x - 3y)³ = (4)³}\\

 \sf{ \implies \: (2x {)}^{3}  - (3x {)}^{3}  - 3(2x)(3y)(2x - 3y) = 64} \\

\sf{ \implies \: 8 {x}^{3}  - 27 {y}^{3} - 18xy(2x - 3y) = 64 } \\

[\textsf{Since, (2x - 3y) = 4 (Given)}]\\

\sf{ \implies \: 8 {x}^{3}  - 27 {y}^{3} - 18xy(4) = 64 } \\

\sf{ \implies \: 8 {x}^{3}  - 27 {y}^{3} - 72xy= 64 } \\

 \bf \underline{Hence the\: value\: of\: 8x³-27y³-72xy \: is\: 64.} \\

Similar questions