Math, asked by yanapatel, 1 year ago

2x-3y=4 then find the value of 8x3-27y3-72xy

Answers

Answered by n757
4
(2x-3y)3
=8x3-27y3-18xy(2x-3y)
=8x3-27y3-18xy*4
=8x3-27y3-72xy

n757: thus the value of it is 4^3=64
Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Given-} \\

\textsf{2x - 3y = 4}\\

 \bf \underline{To\: find-} \\

\textsf{the value of 8x³ - 27y³ - 72xy = ?}\\

 \bf \underline{Solution-} \\

\textsf{We have,}\\

\textsf{2x - 3y = 4}\\

\textsf{Cubing on both sides, we get}\\

\textsf{(2x - 3y)³ = (4)³}\\

\textsf{★Now, comparing the given expression with (a-b)³, we get}\\

\textsf{\: \: \: \: \: a = 2x and b = 3y.}\\

\textsf{★Using identity (a-b)³ = a³-b³-3ab(a-b), we have}\\

\textsf{(2x - 3y)³ = (4)³}\\

 \sf{ \implies \: (2x {)}^{3}  - (3x {)}^{3}  - 3(2x)(3y)(2x - 3y) = 64} \\

\sf{ \implies \: 8 {x}^{3}  - 27 {y}^{3} - 18xy(2x - 3y) = 64 } \\

[\textsf{Since, (2x - 3y) = 4 (Given)}]\\

\sf{ \implies \: 8 {x}^{3}  - 27 {y}^{3} - 18xy(4) = 64 } \\

\sf{ \implies \: 8 {x}^{3}  - 27 {y}^{3} - 72xy= 64 } \\

 \bf \underline{Hence, the\: value\: of\: 8x³-27y³-72xy \: is\: 64.} \\

Similar questions