Math, asked by rose2474, 9 months ago

(2x-3y + 4z)² give answer​

Answers

Answered by Rohith200422
8

Question:

Find the value of :-

{(2x - 3y + 4z) }^{2}

Answer:

(2x−3y+4z)² = 4x² + 9y² + 16z² - 12xy - 24yz +16xz .

Step-by-step explanation:

We know that,

 \boxed{ \sf {(a  + b + c) }^{2}  = {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ac}

 \bold{{(2x - 3y + 4z) }^{2} }

Here, \: a = 2x, \: b =  - 3y, \: c = 4z

 \sf=   {(2x)}^{2}  + {( - 3y) }^{2}  +  {(4z)}^{2}  + 2(2x)( - 3y) + 2( - 3y)(4z) + 2(2x)(4z)

=  \boxed{ \sf4 {x}^{2}  + 9 {y}^{2}  + 16 {z}^{2}  - 12xy - 24yz + 16xz}

 \therefore (2x−3y+4z)² = 4x² + 9y² + 16z² - 12xy - 24yz + 16xz .

Formula used:

 \bigstar {(a  + b + c) }^{2}  = {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ac

Formula to know:

\bigstar {(a+b)}^{2} = a^{2} + 2ab+b^{2}

\bigstar {(a-b)}^{2} = a^{2} - 2ab+b^{2}

\bigstar (x+a)(x+b)=x^{2}+x(a+b)+ab

Similar questions