Math, asked by malviyajay550, 10 hours ago

2x + 3y = 8; 6x + 5y = 16​. elimination method​

Answers

Answered by amansharma264
11

EXPLANATION.

⇒ 2x + 3y = 8. - - - - - (1).

⇒ 6x + 5y = 16. - - - - - (2).

As we know that,

Multiply equation (1) by 5.

Multiply equation (2) by 3.

⇒ 2x + 3y = 8. - - - - - (1).  x  5.

⇒ 6x + 5y = 16. - - - - - (2).  x  3.

We write equation as,

⇒ 10x + 15y = 40. - - - - - (1).

⇒ 18x + 15y = 48. - - - - - (2).

Subtracting equation (1) and (2), we get.

⇒ 10x + 15y = 40. - - - - - (1).

⇒ 18x + 15y = 48. - - - - - (2).

⇒ -      -          -

We get,

⇒ - 8x = - 8.

⇒ x = 1.

Put the value of x = 1 in equation (1), we get.

⇒ 2x + 3y = 8.

⇒ 2(1) + 3y = 8.

⇒ 2 + 3y = 8.

⇒ 3y = 8 - 2.

⇒ 3y = 6.

⇒ y = 2.

Values of x = 1  and  y = 2.

Answered by Sen0rita
11

Solution :

Here, are given two equations which we've to solve by elimination method.

2x + 3y = 8 ...i)

6x + 5y = 16 ...ii)

Multiply i) by 6 and ii) by 2

(2x + 3y) × 6 = 8 × 6

=> 12x + 18y = 48 ...iii)

(6x + 5y) × 2 = 16 × 2

=> 12x + 10y = 32 ...iv)

Now, subtract iv) from iii)

=> (12x + 18y) - (12x + 10y) = 48 - 32

=> 12x + 18y - 12x - 10y = 16

=> 12x - 12x + 18y - 10y = 16

=> 18y - 10y = 16

=> 8y = 16

=> y = 2

Put the value of y in i)

=> 2x + 3y = 8

=> 2x + 3(2) = 8

=> 2x + 6 = 8

=> 2x = 8 - 6

=> 2x = 2

=> x = 1

Now, verify the results.

Again let's take i)

=> 2x + 3y = 8

=> 2(1) + 3(2) = 8

=> 2 + 6 = 8

=> 8 = 8

x = 1 and y = 2.

Similar questions