Math, asked by riya643, 1 year ago

(2x+3y)dx+(3x-2y)dy=0

Answers

Answered by avuneet
2
(3x_2y)dy= -(2x+3y)dx

dy/dx = -(2x+3y)/(3x_2y)
integrating both sides thn solve it
Answered by roshinik1219
1

Given:

  • A differential equation  (2x+3y)dx+(3x-2y)dy=0  is given.

To Find:

  • Solve the given differential equation.

Solution:

(2x+3y)dx+(3x-2y)dy=0

           \frac{dy}{dx}=-\frac{2x+3y}{3x+2y}\\      \frac{dy}{dx} =                - \frac{3}{2}+\frac{5}{2}\frac{x}{3x+2y}

let’s substitute  z=3x+2y

Its derivative is

               \frac{dz}{dx}=3+2\frac{dy}{dx}

              \frac{dy}{dx}=\frac{1}{2}\frac{dz}{dx}-\frac{3}{2}

              \frac{1}{2}\frac{dz}{dx}-\frac{3}{2}=-\frac{3}{2}+\frac{5}{2}\frac{x}{z}\\

               \frac{dz}{dx}=5\frac{x}{z}

Now, This is separable

           zdz=5xdx

Integrating both sides, we get

           \frac{1}{2}z^2=\frac{5}{2}x^2+c

Re substitute

             (3x+2y)^2=5x^2+c

              9x^2+4y^2+12xy=5x^2+c

              4x^2+4y^2+12xy=c

Thus,

            4x^2+4y^2+12xy=c

Similar questions