2x + 3y + z = 9
4x + y = 7
x - 3y - 7z = 6
Answers
Answer:
Karna Kya hai
complete the question
the question is incomplete
GIVEN :
The equations are 2x+3y+z=9, x+2y+3z=6, 3x+y+2z=8
TO FIND :
The values of x, y, and z in the given equations.
SOLUTION :
Given that the equations are
2x+3y+z=9\hfill (1)2x+3y+z=9\hfill(1)
x+2y+3z=6\hfill (2)x+2y+3z=6\hfill(2)
3x+y+2z=8\hfill (3)3x+y+2z=8\hfill(3)
Now solving the equations (1) ,(2) and (3) by using Elimination method.
Multiply the equation (1) into 3
6x+9y+3z=27\hfill (4)6x+9y+3z=27\hfill(4)
Now subtracting (4) by (2),
6x+9y+3z=27
x+2y+3z=6
(-)_(-)_(-)_(-)___
5x+7y=21\hfill (5)5x+7y=21\hfill(5)
_______________
Multiply the equation (1) into 2
4x+6y+2z=18\hfill (6)4x+6y+2z=18\hfill(6)
Now subtracting (6) by (3),
4x+6y+2z=18
3x+y+2z=8
(-)_(-)_(-)_(-)___
x+5y=10\hfill (7)x+5y=10\hfill(7)
_______________
Now multiply the equation (7) into 5 we get,
5x+25y=50\hfill (8)5x+25y=50\hfill(8)
Subtracting the equations (5) and (8)
5x+7y=21
5x+25y=50
(-)_(-)__(-)____
-18y=-29
∴ y=\frac{29}{18}y=
18
29
Substitute the value of y in equation (5) we get
5x+7(\frac{29}{18})=215x+7(
18
29
)=21
5x=21-\frac{203}{18}5x=21−
18
203
5x=\frac{378-203}{18}5x=
18
378−203
x=\frac{175}{18}\times \frac{1}{5}x=
18
175
×
5
1
∴ x=\frac{35}{18}x=
18
35
Substitute the values of x and y in equation (1) we get
2(\frac{35}{18})+3(\frac{29}{18})+z=92(
18
35
)+3(
18
29
)+z=9
z=9-\frac{35}{9}-\frac{29}{6}z=9−
9
35
−
6
29
z=\frac{162-70-87}{18}z=
18
162−70−87
∴ z=\frac{5}{18}z=
18
5
∴ the values of x , y and z are \frac{35}{18},\frac{29}{18},\frac{5}{18}
18
35
,
18
29
,
18
5
respectively.
∴ x=\frac{35}{18}x=
18
35
, y=\frac{29}{18}y=
18
29
and z=\frac{5}{18}z=
18
5
.