Math, asked by arunamk2323, 8 months ago

√2x + 4 = 1o-x (in icse class 10th )
chapter 5 quadratic equation (exercise 5.3)

Answers

Answered by sonunacl
1

Answer:

√2x+x=10-4

(√2+1)x=6

x=6/(√2+1)

x=6*(√2-1)/2-1

x=6(√2-1)

Answered by InfiniteSoul
2

\sf{\underline{\boxed{\green{\large{\bold{ Solution}}}}}}

\sf\implies \sqrt 2 x + 4 = 10 - x

\sf\implies\sqrt 2 x = 10 - 4 - x

⠀⠀⠀⠀

\sf\implies\sqrt 2 x = 6 - x ⠀⠀⠀

⠀⠀⠀⠀

  • Squaring both the sides

\sf\implies ( \sqrt 2 x)^2 = ( 6- x)^2 ⠀⠀

⠀⠀⠀⠀

\sf\implies 2x^2 = 36 + x^2 - 12x

⠀⠀⠀

\sf\implies  2x^2- x^2+ 12x - 36= 0

⠀⠀

\sf\implies x^2 + 12x - 36 = 0

⠀⠀⠀⠀

compare the eq with \sf{\underline{\bold{ax^2 + bx + c = 0 }}}

⠀⠀⠀⠀⠀⠀⠀

☯ a = 1

☯ b = 12

☯ c = -36

⠀⠀⠀⠀⠀⠀⠀

now :-

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{x =  \dfrac{ - b \pm \sqrt D }{2a }}}}}}}

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{ D =  b^2 - 4ac }}}}}}

⠀⠀⠀⠀⠀⠀⠀

finding value of D.

⠀⠀⠀⠀⠀⠀⠀

\sf\implies D = b^2 - 4ac

\sf\implies D = (12)^2 - 4 \times 1 \times -36

\sf\implies D = 144 + 144

\sf\implies D = 288

\sf{\underline{\boxed{\blue{\large{\bold{ D = 288}}}}}}

⠀⠀⠀⠀⠀⠀⠀

putting values in the eq.

⠀⠀⠀⠀⠀⠀⠀

\sf\implies x = \dfrac{ -b \pm\sqrt D }{2a}

\sf\implies x = \dfrac{ -( 12 )  \pm\sqrt {288} }{2\times 1 }

\sf\implies x = \dfrac{ -12 \pm 12\sqrt 2}{2}

⠀⠀⠀⠀⠀⠀⠀

 \sf x = \dfrac{ -12 + 12\sqrt 2 }{ 2 }

\implies x = -6 + 6\sqrt 2

\sf{\underline{\boxed{\purple{\large{\bold{ x = -6 + 6\sqrt 2}}}}}}

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

 \sf x = \dfrac{ -12 - 12\sqrt 2 }{ 2 }

\implies x = -6 -6\sqrt2

\sf{\underline{\boxed{\purple{\large{\bold{ x = -6 -6\sqrt 2}}}}}}

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\purple{\large{\bold{ x = -6 + 6\sqrt 2 \: or -6 - 6\sqrt 2 }}}}}}

⠀⠀⠀⠀⠀⠀⠀

Similar questions