Math, asked by sureshshukla151276, 9 months ago

(2x^4-3x^3-3x^2+6x-2) divided by (x^2-2) hint: polynomial ☺☺☺☺​

Answers

Answered by rohangupta0424
1

Answer:

2x²−3x+1

Step-by-step explanation:

(2x^4-3x^3-3x^2+6x-2)/(x^2-2)

(x−1)(2x−1)(x²−2)/x²-2

=2x²−3x+1

Answered by Mihir1001
16
Division of polynomials :
____________________

<br />\begin{array}{r|l|r}<br />{x}^{2} - 2&amp; 2 {x}^{4} - 3 {x}^{3} - 3 {x}^{2} + 6x + 2&amp;2 {x}^{2} - 3x - 1 \\ <br />\cline{1-1} \cline{3-3}<br />\: &amp; 2 {x}^{4} \qquad \: \: \: - 2 {x}^{2} \quad &amp; \: \\ <br />\: &amp; - \qquad \qquad + &amp; \: \\ <br />\cline{2-2} \: &amp;0 \quad - 3 {x}^{3} - {x}^{2} + 6x + 2&amp; \: \\ <br />\: &amp; \qquad - 3 {x}^{3} \qquad \: + 6x \quad &amp; \: \\ <br />\: &amp; \qquad + \qquad \qquad - \qquad &amp; \: \\ <br />\cline{2-2} \: &amp; \quad \qquad 0 \: \: \: - {x}^{2} \qquad \: \: + 2&amp; \: \\<br />\: &amp; \qquad \: \: \quad \: \: \: \: - {x}^{2} \qquad \: \: \: + 2 &amp; \\ <br />\: &amp; \qquad \: \qquad + \qquad \qquad - &amp; \: \\ <br />\cline{2-2} \: &amp; \qquad \qquad \quad 0 \qquad \qquad 0&amp; \: \\ <br />\end{array}<br />

Hence,
\underline{\boxed{ \frac{2 {x}^{4} - 3 {x}^{3} - 3 {x}^{2} + 6x + 2}{ {x}^{2} - 2} = 2 {x}^{2} - 3x - 1 \\ }}
Similar questions
Math, 4 months ago