Math, asked by saipanda299, 8 months ago

(2x+4y+5z)(4x²+16y²+25z²-8xy-20yz-10zx) find product ​

Answers

Answered by No1askedyou
0

Answer: 8x^3−120xyz+64y3+125z3

Step-by-step explanation:

(2x+4y+5z)(4x2+16y2+25z2−8xy−20yz−10zx)

=(2x+4y+5z)(4x2+16y2+25z2+−8xy+−20yz+−10xz)

=(2x)(4x2)+(2x)(16y2)+(2x)(25z2)+(2x)(−8xy)+(2x)(−20yz)+(2x)(−10xz)+(4y)(4x2)+(4y)(16y2)+(4y)(25z2)+(4y)(−8xy)+(4y)(−20yz)+(4y)(−10xz)+(5z)(4x2)+(5z)(16y2)+(5z)(25z2)+(5z)(−8xy)+(5z)(−20yz)+(5z)(−10xz)

=8x3+32xy2+50xz2−16x2y−40xyz−20x2z+16x2y+64y3+100yz2−32xy2−80y2z−40xyz+20x2z+80y2z+125z3−40xyz−100yz2−50xz2

Similar questions