Math, asked by devrukhkarvaishnavi2, 2 months ago

2x=5y-1 ;x=y-1 solve the crammers rule​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

➢ Given equations are

\rm :\longmapsto\:2x = 5y - 1

and

\rm :\longmapsto\:x = y - 1

can be rewritten as

\rm :\longmapsto\:2x - 5y =  - 1

and

\rm :\longmapsto\:x - y =  - 1

The above equation in matrix form can be written as

\rm :\longmapsto\:A = \bigg[ \begin{matrix}2& - 5 \\ 1& - 1 \end{matrix} \bigg]

\rm :\longmapsto\:X = \begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered}

\rm :\longmapsto\:B = \begin{gathered}\sf \left[\begin{array}{c} - 1\\ - 1\end{array}\right]\end{gathered}

So,

\rm :\implies\:AX = B

Consider,

\rm :\longmapsto\: |A|  = \begin{array}{|cc|}\sf 2 &\sf  - 5  \\ \sf 1 &\sf  - 1 \\\end{array}

 \rm \:  =  \:  \:  - 2 + 5

\rm \:  =  \:  \: 3

\rm :\implies\: |A| = 3 \:  \ne \: 0

➢ System of equations is consistent having unique solution.

Now,

Consider,

\rm :\longmapsto\: D_1 = \begin{array}{|cc|}\sf  - 1 &\sf  - 5  \\ \sf  - 1 &\sf  - 1 \\\end{array}

\rm \:  =  \:  \: 1 - 5

\rm \:  =  \:  \:  - 4

\bf\implies \:D_1 =  - 4

Consider,

\rm :\longmapsto\: D_2  = \begin{array}{|cc|}\sf 2 &\sf  - 1  \\ \sf 1 &\sf  - 1 \\\end{array}

\rm \:  =  \:  \:  - 2 + 1

\rm \:  =  \:  \:  -1

\bf\implies \:D_1 =  - 1

So,

By Cramer's Rule

\bf :\longmapsto\:x = \dfrac{D_1}{ |A| }  = \dfrac{ - 4}{3}  =  - \dfrac{4}{3}

and

\bf :\longmapsto\:y = \dfrac{D_2}{ |A| }  = \dfrac{ - 1}{3}  =  - \dfrac{1}{3}

Verification

Consider first equation :-

\rm :\longmapsto\:2x - 5y =  - 1

On substituting the values of x and y, we get

\rm :\longmapsto\:2\bigg( - \dfrac{4}{3} \bigg)  - 5\bigg( - \dfrac{1}{3} \bigg)  =  - 1

\rm :\longmapsto\:\bigg( - \dfrac{8}{3} \bigg) + \bigg(\dfrac{5}{3} \bigg)  =  - 1

\rm :\longmapsto\:\dfrac{ - 8 + 5}{3}  =  - 1

\rm :\longmapsto\:\dfrac{ - 3}{3}  =  - 1

\rm :\implies\: - 1 =  - 1

Hence, Verified

Consider second equation

\rm :\longmapsto\:x - y =  - 1

On substituting the values of x and y, we get

\rm :\longmapsto\:\bigg( - \dfrac{4}{3} \bigg)  - \bigg( - \dfrac{1}{3} \bigg)  =  - 1

\rm :\longmapsto\:\bigg( - \dfrac{4}{3} \bigg) + \bigg(\dfrac{1}{3} \bigg)  =  - 1

\rm :\longmapsto\:\dfrac{ - 4 + 1}{3}  =  - 1

\rm :\longmapsto\:\dfrac{ - 3}{3}  =  - 1

\rm :\implies\: - 1 =  - 1

Hence, Verified

Similar questions