Math, asked by drakeshranjan2774, 1 month ago

2x + 5y = 26; 5x - 4y=1 by cramers method

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given pair of equations are

  • 2x + 5y = 26

  • 5x - 4y = 1

★ The matrix representation is

\rm :\longmapsto\:A = \begin{bmatrix} 2 & 5\\5 &  - 4\end{bmatrix}

\rm :\longmapsto\:\begin{gathered}\sf B=\left[\begin{array}{c}26\\1\end{array}\right]\end{gathered}

\rm :\longmapsto\:\begin{gathered}\sf X=\left[\begin{array}{c}x\\y\end{array}\right]\end{gathered}

So that,

\rm :\longmapsto\:AX=B

Consider,

\rm :\longmapsto\: |A|  = \begin{array}{|cc|}\sf 2 &\sf 5  \\ \sf 5 &\sf  - 4 \\\end{array}

\:  \: \rm= \:  \: - 8 - 25

\:  \: \rm= \:  \: - 33

\rm :\implies\: |A| \:   \ne \: 0

★ It implies, system of equations has unique solution.

Consider,

\rm :\longmapsto\: D_1 = \begin{array}{|cc|}\sf 26 &\sf 5  \\ \sf 1 &\sf  - 4 \\\end{array}

\:  \: \rm= \:  \: - 104 - 5

\:  \: \rm= \:  \: - 109

Consider,

\rm :\longmapsto\: D_2 = \begin{array}{|cc|}\sf 2 &\sf 5  \\ \sf 26 &\sf  1 \\\end{array}

\:  \: \rm= \:  \:2 - 130

\:  \: \rm= \:  \: - 128

Hence,

\rm :\longmapsto\:x = \dfrac{D_1}{ |A| }  =  \dfrac{ - 109}{ - 33}  = \dfrac{109}{33}

and

\rm :\longmapsto\:y = \dfrac{D_2}{ |A| }  =  \dfrac{ - 128}{ - 33}  = \dfrac{128}{33}

Similar questions