Math, asked by karmjotenterprises, 1 month ago

(2x-5y) (2x-5y)solve by identities​

Answers

Answered by OtakuSama
31

Given Equation:-

 \\ \sf{\bold{(2x - 5y)(2x - 5y)}}\\\\

To Do:-

\\\sf{\rightarrow{Solve \: by \: identities }}\\\\

Formula Applied:-

\\\sf{\bold{(a  -  b) {}^{2} } =  {a}^{2}   - 2ab +  {b}^{2} }\\\\

Solution:-

\\\sf{\bold{(2x - 5y)(2x - 5y)}}

\\\sf{\implies{(2x - 5y) {}^{2} }}

 \\ \sf{Comparing \: this \: equation \: with \:  {(a - b)}^{2} , \: we \: find,}

\sf{\bold{a} = 2x\: and \: \bold{b} = \sf{5y}}\\\\

Now, applying the formula;-

 \\ \sf{ {(2x)}^{2}  - 2 \times 2x \times 5y +  {(5y)}^{2}}

 \\ \sf{\therefore{\red{4 {x}^{2}  - 20xy + 25 {y}^{2} }}}

\\\underline{\boxed{\rm{Hence, \: the \: answer \: is \: \bold{4 {x}^{2}  - 20xy + 25 {y}^{2} }}}}\\\\

More Important Formulas:-

\\\sf{\bold{(a + b) {}^{2}}  =  {a}^{2} + 2ab +  {b}^{2}  } \\  \\ \sf{\bold{(a  -  b) {}^{2}}  =  {a}^{2}  -  2ab +  {b}^{2}  }

\\ \sf{\bold{(a  -  b) {}^{3}}  =   {a}^{3}   -  3 {a}^{2}b + 3a {b}^{2}  -   {b}^{3}    } \\  \\\sf{\bold{(a   +  b) {}^{3}}  =   {a}^{3}    +   3 {a}^{2}b + 3a {b}^{2}   +    {b}^{3} }

Answered by sanvi7031
12

\huge\bold\red{Answer:-}

(2x-5y) (2x-5y)

\implies(2x-5y^2)

Applying the Formula :-

a-b^2=a^2+2ab+b^2

= (2x^2)-2×2x×5y+(5y^2)

=4x^2-20xy+25y^2

Similar questions