Math, asked by Tanvi461, 1 year ago

(2x +5y)³ + (2x-5y)³ evaluate by the formula of a³+3a²b+3ab²+b³

Answers

Answered by Anonymous
1

Answer: 16x³+300xy²

Explanation:

(2x + 5y)³ + (2x - 5y)³

= [(2x)³ + (3(2x)²(5y)) +(3(2x)(5y)²)

+(5y)³]+ [((2x)³ - 3(2x)²(5y) + (3(2x)(5y) ² - (5y) ³]

= 8x³ + 60x²y + 150xy² + 125y³

+ 8x³ -60x²y + 150xy² - 125y³

=16x³+300xy²

therefore, 16x³+300xy² is the final answer

formulae used :

(a + b) ³ = a³ + 3a²b + 3ab² + b³

(a - b)³ = a³ - 3a²b + 3ab² - b³

Answered by Blaezii
8

Answer:

\sf 16x^3+300xy^2

Step-by-step explanation:

Given Problem:

(2x +5y)³ + (2x-5y)³, Evaluate by the formula of a³+3a²b+3ab²+b³

Solution:

Formulas To Be Used:

\sf=>(a + b)^3 = a^3 + 3a^2b + 3ab^2 +b^3\\=>(a - b)^3 =a^3-3a^2b+3ab^3 - b^3

Method:

(2x + 5y)³ + (2x - 5y)³

=> [(2x)³ + (3(2x)²(5y)) +(3(2x)(5y)²)

=> (5y)³]+ [((2x)³ - 3(2x)²(5y) + (3(2x)(5y) ² - (5y) ³]

=>8x³ + 60x²y + 150xy² + 125y³

=>8x³ -60x²y + 150xy² - 125y³

=>16x³+300xy²

Hence,

The Correct Answer is 16x³+300xy²

Similar questions