Math, asked by karan2911, 17 hours ago

2x+5y=7, 3x-2y=-18 find the valye of x and y by elemination method ​ please do it fast

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given pair of linear equations are

 \rm \: 2x + 5y = 7 -  -  - (1)

and

 \rm \: 3x  -  2y =  - 18 -  -  - (2)

On multiply equation (1) by 3, we get

 \rm \: 6x + 15y = 21 -  -  - (3)

On multiply equation (2) by 2, we get

 \rm \: 6x  -  4y =  - 36 -  -  - (4)

On Subtracting equation (4) from equation (3), we get

\rm \:19y = 57

\rm\implies \:\boxed{\tt{ y \:  =  \: 3 \: }} \\

On substituting y = 3, in equation (1), we get

 \rm \: 2x + 5(3)= 7

 \rm \: 2x + 15= 7

 \rm \: 2x = 7 - 15

 \rm \: 2x = - 8

\rm\implies \:\boxed{\tt{  \: x \:  =  \:  -  \: 4 \: }} \\

Hence, Solution set of pair of equation is given by

 \red{\begin{gathered}\begin{gathered}\bf\: \begin{cases} &\sf{x \:  =  \:  -  \: 4 \: }  \\ \\ &\sf{y \:  =  \: 3} \end{cases}\end{gathered}\end{gathered}}

VERIFICATION

Consider

 \rm \: 2x + 5y = 7

On substituting the values of x and y, we get

 \rm \: 2( - 4) + 5(3) = 7

 \rm \:  - 8+ 15 = 7

\rm\implies \:7 = 7

Hence, Verified

Now, Consider

 \rm \: 3x  -  2y =  - 18

On substituting the values of x and y, we get

 \rm \: 3( - 4)  -  2(3) =  - 18

 \rm \:  - 12  -  6 =  - 18

\rm\implies \: - 18 =  - 18

Hence, Verified

Answered by savitasharwan
0

Answer:

- + -

___________

5y = -6

y=−

5

−6

3x−2(−

5

6

)=24

=3x+

5

12

=24

=3x=24−

5

12

=

5

120−12

=

5

108

∴x=

5

36

x+y=

5

36−6

=

5

30

=6

x−y=

5

36+6

=

5

42

Attachments:
Similar questions