Math, asked by ryan1984, 7 months ago

2x + 87x - 25 = y + 4y is an example of a

a Circle b. parabola c. ellipse

d. hyperbola

Answers

Answered by amitnrw
10

Given :  2x²  + 87x - 25 = y² + 4y

To Find :  Equation is an example of a

a Circle b. parabola c. ellipse  d. hyperbola

Solution:

2x²  + 87x - 25 = y² + 4y

=> 2x²  + 87x - 25 = (y + 2)²  - 4

=> 2(x²  + 87x/2)  - 21  =   (y + 2)²

=> 2(  (x  +  87/4)²  - (87/4)²)  - 21 =  (y + 2)²

=> 2(x  +  87/4)² -  87²/8 - 21  = (y + 2)²

=> > 2(x  +  87/4)² - 7737/8  =  (y + 2)²

=> 2(x  +  87/4)² -   (y + 2)²  =  7737/8

=> 2(x  +  87/4)²  / ( 7737/8 )  -  (y + 2)²/ ( 7737/8 ) = 1

=> (x  +  87/4)² / (7737/16)  -  (y + 2)²/ ( 7737/8 ) = 1

=> (x  - (- 87/4))² / (7737/16)  -  (y -( 2-))²/ ( 7737/8 ) = 1

=> (x  - (- 87/4))² / (√(7737/16))²  -  (y -( 2-))²/ (√( 7737/8 ))² = 1

Equation is of form

(x - h)²/a²  - (y - k)²/b²  = 1

Hence HYPERBOLA

2x²  + 87x - 25 = y² + 4y  is an example of a  HYPERBOLA

Learn More:

Find the equation of hyperbola x^2/36- y^2/9=1 at the point whose ...

https://brainly.in/question/14927699

which statements are true for a hyperbola that has vertices at (-3,-3 ...

https://brainly.in/question/20869045

Similar questions