Math, asked by gafurshaikh2424, 7 months ago

2x^-9-3x find sum and zero​

Answers

Answered by pate6757
0

Answer:

Answer:

The zeros of the equation are x=-\frac{3}{2},3x=−

2

3

,3

Step-by-step explanation:

Given : Equation 2x^2-9-3x2x

2

−9−3x

To find : The zeros of the quadratic polynomial and verify the relationship between the zeros and the coefficient ?

Solution :

Quadratic equation 2x^2-3x-9=02x

2

−3x−9=0

On comparing with general equation, a=2,b=-3,c=-9

Applying middle term split,

2x^2-6x+3x-9=02x

2

−6x+3x−9=0

2x(x-3)+3(x-3)=02x(x−3)+3(x−3)=0

(2x+3)(x-3)=0(2x+3)(x−3)=0

(2x+3)=0,(x-3)=0(2x+3)=0,(x−3)=0

x=-\frac{3}{2},x=3x=−

2

3

,x=3

The zeros of the equation are x=-\frac{3}{2},3x=−

2

3

,3

The relationship between the zeros and the coefficient,

Sum of the zeros, \alpha+\beta=-\frac{b}{a}α+β=−

a

b

-\frac{3}{2}+3=-\frac{-3}{2}−

2

3

+3=−

2

−3

\frac{-3+6}{2}=\frac{3}{2}

2

−3+6

=

2

3

\frac{3}{2}=\frac{3}{2}

2

3

=

2

3

Verified.

Product of the zeros, \alpha\beta=\frac{c}{a}αβ=

a

c

-\frac{3}{2}\times 3=\frac{-9}{2}−

2

3

×3=

2

−9

-\frac{9}{2}=-\frac{9}{2}−

2

9

=−

2

9

Verified.

Step-by-step explanation:

hope it helps

Similar questions