Math, asked by riyabisht23, 2 months ago

2x+i⁴y = 2i find values of x and y

Answers

Answered by adityak4m6le007
9

Answer:

2x +  {i}^{4} y = 2i \\ 2x +  {i}^{4} y - 2i = 0 \\ 2x + i( {i}^{3} y - 2) = 0 \\ we \: know \: that \: 0 + i0 = 0 \\  \: so \: by \: comparing \: we \: cn \: write \\ 2x = 0 \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  {i}^{3} y - 2 = 0 \\ x = 0 \:  \:  \:  \:  \: and \:  \:  \:  \:  \: y =  \frac{2}{ {i}^{3} }  =  \frac{2}{ {i}^{2}.i }  =  \frac{2}{ - i}  =  \frac{2}{ -  \sqrt{ - 1} }  \\ ...( {i}^{2}  =  - 1)

Similar questions