Math, asked by marvellyneranee, 7 months ago

2x + ky = 3; (k + 5)x + 25y = 2k + 5 find the value of k for which the equation has infinite number of solutions​

Answers

Answered by Anonymous
2

Answer:

Question:

If tan θ = ¹/√7 then , show that \sf \dfrac{csc^2\theta-sec^2\theta}{csc^2\theta+sec^2\theta}=\dfrac{3}{4}

csc

2

θ+sec

2

θ

csc

2

θ−sec

2

θ

=

4

3

\huge\bold{Solution :}Solution:

★══════════════════════★

\sf tan\ \theta=\dfrac{1}{\sqrt{7}}tan θ=

7

1

:\to \sf tan^2\theta=\dfrac{1}{(\sqrt{7})^2}:→tan

2

θ=

(

7

)

2

1

:\to \sf \textsf{\textbf{\pink{tan$^\text{2} \boldsymbol \theta\ $ =\ $\dfrac{\text{1}}{\text{7}}$}}}\ \; \bigstar:→tan

2

θ =

7

1

\sf \dfrac{1}{cot\ \theta}=\dfrac{1}{\sqrt{7}}

cot θ

1

=

7

1

:\to \sf cot\ \theta=\sqrt{7}:→cot θ=

7

:\to \sf cot^2\theta=(\sqrt{7})^2:→cot

2

θ=(

7

)

2

:\to \sf \textsf{\textbf{\green{cot$^\text{2}\ \boldsymbol \theta $\ =\ 7}}}\ \; \bigstar:→cot

2

θ = 7 ★

★══════════════════════★

LHS

:\to \bf \blue{\dfrac{csc^2\theta-sec^2\theta}{csc^2\theta+sec^2\theta}}:→

csc

2

θ+sec

2

θ

csc

2

θ−sec

2

θ

From Trigonometric identities ,

csc²θ = 1 + cot²θ

sec²θ = 1 + tan²θ

:\to \sf \dfrac{(1+cot^2\theta)-(1+tan^2\theta)}{(1+cot^2\theta)+(1+tan^2\theta)}:→

(1+cot

2

θ)+(1+tan

2

θ)

(1+cot

2

θ)−(1+tan

2

θ)

tan²θ = ¹/₇

cot²θ = 7

:\to \sf \dfrac{(1+7)-(1+\frac{1}{7})}{(1+7)+(1+\frac{1}{7})}:→

(1+7)+(1+

7

1

)

(1+7)−(1+

7

1

)

:\to\ \sf \dfrac{8-\frac{8}{7}}{8+\frac{8}{7}}:→

8+

7

8

8−

7

8

:\to\ \sf \dfrac{48}{64}:→

64

48

:\to\ \textsf{\textbf{\orange{$\dfrac{\text{3}}{\text{4}}$}}}\ \; \bigstar:→

4

3

Answered by aniii03
1

Answer:

k = 5, y = 1/5 (3 - 2 x)

Step-by-step explanation:

Expand the following:

(2 x + k y = 3, x (k + 5) + 25 y = 2 k + 5)

x (k + 5) = x k + x 5:

(2 x + k y = 3, x k + 5 x + 25 y = 2 k + 5)

Subtract 3 from both sides of 2 x + k y = 3:

(2 x + k y - 3 = 3 - 3, 5 x + x k + 25 y = 2 k + 5)

3 - 3 = 0:

(2 x + k y - 3 = 0, 5 x + x k + 25 y = 2 k + 5)

Subtract 2 k + 5 from both sides of x×5 + x k + 25 y = 2 k + 5:

(2 x + k y - 3 = 0, 5 x + x k + 25 y - 2 k + 5 = (2 k + 5) - 2 k + 5)

(2 k + 5) - (2 k + 5) = 0:

(2 x + k y - 3 = 0, 5 x + x k + 25 y - (2 k + 5) = 0)

-(2 k + 5) = -5 - 2 k:

Answer: |

| (2 x + k y - 3 = 0, 5 x + x k + 25 y + -5 - 2 k = 0)

Similar questions