(2x log x-xy)dy+2ydx=0
Answers
(2x log x-xy)dy+2ydx=0
M = 2y
N = 2x log x - xy
Now,
Upon multiplying the given equation with 1/x, we get,
Hence the result.
Answer:
(2x log x-xy)dy+2ydx=0
M = 2y
N = 2x log x - xy
\dfrac{\partial M}{\partial y}=2∂y∂M=2
\dfrac{\partial N}{\partial y} = 2(1+ log x)-y∂y∂N=2(1+logx)−y
Now, \dfrac {\frac{\partial M}{\partial y} - \frac{\partial N}{\partial y}}{N}N∂y∂M−∂y∂N
\begin{gathered}= \dfrac { 2 - [2(1+logx)-y]} {2x log x - xy}\\\\\\= \dfrac{-2log x +y}{2xlog x - xy}\\\\\\\dfrac{-1}{x} = f(x)\end{gathered}=2xlogx−xy2−[2(1+logx)−y]=2xlogx−xy−2logx+yx−1=f(x)
\begin{gathered}I.F = e^{\int f(x) dx}\\\\= e^{\int \frac {1}{x} dx}\\\\=e^{-log x}\\\\=e^{log x^{-1}}\\\\=x^{-1}\\\\=\dfrac {1}{x}\end{gathered}I.F=e∫f(x)dx=e∫x1dx=e−logx=elogx−1=x−1=x1
Upon multiplying the given equation with 1/x, we get,
= \dfrac{1}{x} 2y dx + \dfrac{1}{x} (2log x - y) dy=0=x12ydx+x1(2logx−y)dy=0
\begin{gathered}\int \dfrac{2y}{x} dx + \int -y dy = c\\\\2ylog x - \dfrac{1}{2}y^2 =c\end{gathered}∫x2ydx+∫−ydy=c2ylogx−21y2=c
Hence the result.