Math, asked by gayatriammu, 1 year ago

2x square +x-3=0.Find the roots of the quadratic equation​

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\mathsf{2x^2+x-3=0}

\underline{\textbf{To find:}}

\textsf{Roots of the given quadratic equation}

\underline{\textbf{Solution:}}

\underline{\textbf{(i) Factorization method:}}

\mathsf{2x^2+x-3=0}

\mathsf{2x^2+3x-2x-3=0}

\mathsf{x(2x+3)-1(2x+3)=0}

\mathsf{(x-1)(2x+3)=0}

\implies\mathsf{x-1=0\;\;\;(or)\;\;\;2x+3=0}

\implies\mathsf{x=1,\dfrac{-3}{2}}

\underline{\textbf{(ii) Formula method:}}

\mathsf{2x^2+x-3=0}

\mathsf{Here,\;a=2,\;b=1,\;c=-3}

\textsf{Quadratic formula is}

\mathsf{x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}}

\mathsf{x=\dfrac{-1\pm\sqrt{1^2-4(2)(-3)}}{2(2)}}

\mathsf{x=\dfrac{-1\pm\sqrt{1+24}}{4}}

\mathsf{x=\dfrac{-1\pm\sqrt{25}}{4}}

\mathsf{x=\dfrac{-1\pm\,5}{4}}

\mathsf{x=\dfrac{-1+5}{4},\dfrac{-1-5}{4}}

\mathsf{x=\dfrac{4}{4},\dfrac{-6}{4}}

\mathsf{x=1,\dfrac{-3}{2}}

\underline{\textbf{Answer:}}

\mathsf{Roots\;of\;the\;equation\;are\;1\;and\;\dfrac{-3}{2}}

Answered by ravilaccs
0

Answer:

The roots of the quadratic equation is x=1 ,x=-\frac{3}{2}

Step-by-step explanation:

Solve by factoring:

$$\begin{aligned}&2 x^{2}-2 x+3 x-3=0 \\&2 x(x-1)+3(x-1)=0 \\&(2 x+3)(x-1)=0 \\&2 x+3=0 \\&2 x=-3 \\&x=-\frac{3}{2} \\&x-1=0 \\&x=1\end{aligned}$$

Similar questions